Recurrent Neural Networks for Modeling Motion Capture Data

Mir Khan, Heikki Huttunen, Olli Suominen and Atanas Gotchev
Laboratory of Signal Processing
Tampere University of Technology
Tampere, Finland
Email: mirabdul @tut.fi, heikki.huttunen @tut.fi, olli.j.suominen@tut.fi, atanas.gotchev@tut.fi

Abstract—Recurrent Neural Networks have recently received
attention for human animation applications including motion
synthesis; however, previous works did not provide any quan-
titative approaches for evaluating the quality of the motion
generated by these models. In this paper, we use three different
recurrent neural network architectures for synthesizing human
motion for a detailed skeleton with 64 joints. We introduce a
novel motion quality metric for quantitatively evaluating the
realism of the synthesized motion. We use this metric, among
others, to compare the motion generated by the three network
architectures and empirically study the impact of the network’s
complexity on the quality of the motion.

Keywords: motion capture, recurrent neural network,
generative model, long short-term memory

1. Introduction

Producing natural animations is important for many
entertainment industries. Motion capture is one commonly
used method for reproducing convincing animations by
recording motion played by human actors. Motion capture
data is used to animate 3D characters by mapping the same
motion onto the virtual character. While motion capture
offers many advantages, it suffers from several drawbacks.
This includes the difficulty of reusing motion data for dif-
ferent scenarios. Therefore, it would be of great interest
to the industry to generate animations through alternative
approaches that do not rely heavily on human actors and
manual processing.

One alternative approach to motion capture and manual
animation is simulation-based methods for generating nat-
ural motion, which is an area closely related to robotics.
The principle in these methods is to develop control strate-
gies for humanoids and imaginary creatures in a simulated
environment through the use of reinforcement learning and
optimization methods such as genetic algorithms. The con-
trol strategies are then optimized with respect to a criteria
(often called a fitness function) such as total distance trav-
eled. An early example of these methods was introduced
in [24], where virtual creatures with random morpholo-
gies develop relatively optimal control strategies such as
swimming, running, jumping, and crawling depending on
their environment, their own physical characteristics, and

the defined fitness function. Similar techniques have been
used to produce more controlled behavior such as bipedal
gait animations in a simulated environment [22]. Using
bio-mechanical constraints have been shown to produce
even more convincing and natural-looking animations for
bipedal virtual creatures [I0]]. The main drawback of these
techniques is that the generated motion is not often exactly
what the animator may desire.

Techniques based on neural networks with multiple lay-
ers are known as deep learning. Neural networks, which are
crude models of the information-processing mechanism of
the biological brain, are extremely versatile machine learn-
ing tools with an ever-growing range of applications. Neu-
ral Networks techniques previously have been successfully
applied for tasks such as image classification [I7]|[[I]], face-
recognition [I§][21]], audio classification [[I6]], and speech
recognition [9].

Deep learning techniques for synthesizing 3D human
motion has drawn attention recently. An approach has been
proposed in [T4]|[I3] to learn a space of valid human
poses (called the motion manifold) using a convolutional-
autoencoder network architecture. The framework can be
used for novel motion synthesis, motion interpolation, and
error-correction. A method that uses conditional Restricted
Boltzmann Machines (cCRBM) have been used to synthesize
human gait animations [23]].

Recurrent Neural Networks (RNNs) are a variation of
standard neural networks with feedback loops where the
inputs of previous time steps determine the output at fu-
ture and present time steps. This temporal attribute of
RNNs makes them well-suited for analyzing time-series
data. RNNs have bee successfully used for automatic music
composition and analysis [3I[20], image synthesis [[TT]|, and
handwriting generation [].

A variant of RNNs, called Long Short-Term Memory
(LSTM), has been proposed for solving several problems
standard RNNs suffer from, among these are learning long-
term dependencies which LSTM networks are capable of
for up to 1000 discrete time steps into the future [I2]]. More
notably, LSTM networks solve the phenomena of vanishing
gradient [[T3]], which is a problem that arises in very deep
neural networks, RNNs in particular. The main difference
between a standard RNN and an LSTM network is the
inclusion of memory states and gates. LSTM networks have

been previously used successfully for human motion syn-
thesis by training the network on a large dataset of human
motion capture data with a variety of motion categories [4].
A similar approach was presented in [2] that uses a data set
which consists of recordings of a dancer, which allows the
network to generate dancing animations in a similar style.

Our work is most closely related to and [4], but
our focus is on motion synthesis for a detailed skeleton
with 64 joints. More importantly, we study and compare the
quality of the synthesized motion and present a quantitative
evaluation of the motion generated by three different LSTM
architectures. The purpose of this study is to determine the
impact of the complexity of the model in terms of layers on
the quality of the generated motion, and therefore provide a
rigorous and quantitative justification for selecting a model
for applications of motion synthesis.

2. Methods

2.1. Data preparation

Our data set consists of 5 hours of motion capture
data recorded at 120 frames per second. Various motion
categories are present in the data set such as walking,
running, and dancing. The skeleton model of the motion
capture data set is a 64-joint human skeleton model, which
includes details such as hand fingers. The motion capture
data is stored as a time-series of joint rotation angles in
the files, but we transform this data to a time series of joint
position coordinates. Thus, each time-step of the sequence is
represented by 3 x 64 = 192-dimensional vector consisting
of the concatenation of the =,y and z position coordinates
of each joint. We construct the training set by extracting a
fixed-length sequence using a 200-frame temporal window
sliding at a temporal step size of 100 frames, resulting in
50% overlap between consecutive training samples. Each

input sample X € R92%290 j5 3 motion sequence given as
M1 (2) (3) (200) 7
xhips Ihips xhips te hips
(1) (2) (3) (200)
yhips yh’ips yhips te yhips
(1) (2) (3) (200)
Zh,ips zhips th’ps e Zhips
ng(1) (2) (3) (200)
spine spine spine "¢ spine
X = (D
(1) (2) (3) (200)
xfoot xfoot mfoot te 'rfoot
(1) (2) (3) (200)
yfoot yfoot yfoot te yfoot
(1) (2) 3) (200)
_Zfoot Zfoot Zfoot te Zfoot i

where the horizontal dimension corresponds to the number
of frames in the sequence, and the vertical dimension cor-
responds to the degrees of freedom of all 64 joints, i.e., the
joint position coordinates. The subscript denotes the joint
name according to the hierarchy defined in the motion data
files. In our case, the first joint from which all other joints

extend is the hips joint. The superscript denotes the frame
number and it corresponds to the horizontal axis of the
matrix.

Each target output sample y € R'92%! in the training
set is a vector, representing a single frame of motion, and it
is the frame that follows the input sample X extracted from
the same original motion file. Thus, a single training sample
is given as the pair (X, y). In essence, the network is trained
to complete the motion sequence it is given one frame at a
time. These data preparation methods result in a final data
set of nearly 15,000 samples, of which 500 are reserved for
validation and another 500 for testing and motion synthesis

To generate a motion sequence, first, the input X is
simply fed to the network and the output is computed.
Then, this output is concatenated with the previous input
sequence X along the temporal axis, and it is shifted one
frame forward, such that X will then contain the previous
output y as its last frame while maintaining its length of
200 frames. This process is repeated for as many time steps
as desired by feeding the newly constructed input sequence
X to the network again to generate motion sequences of
arbitrary length.

2.2. Network architecture

We use three network architectures which we will refer
to as LSTMI1, LSTM2, and LSTM3, where the post-fix
denotes the number of layers in the network, each with
1000 LSTM units. Previous approaches in applying LSTM
for motion capture used slightly more complex network
architectures such as an encoder-decoder architecture in [{]
and a Mixture-Density Network layer in [2]]. For the purpose
of analysis and comparison, we decided to keep the models
simple so that our analysis captures the essential properties
of these networks.

The weights for all layers are initialized according to
[23]l by generating an orthogonal matrix with a gain factor of
1.0. The weights matrix for the recurrent kernel is initialized
by sampling a truncated normal distribution; this is known
as a glorot normal initialization [[§]. The bias values are all
initialized to zeros. A linear activation function is used at
the output layer of the network. All hidden layers use the
hyperbolic tangent as their activation functions, and a hard
sigmoid as the activation function for the recurrent step. The
Mean-Squared Error (MSE) was used as the loss function
and RMSprop [26] was chosen as an optimizer with the
initial learning rate of 0.001. The network was trained with
approximately 14, 000 samples using a mini-batch size of 32
samples. Each network was trained until the performance
of the network (in the MSE sense) stopped showing any
improvement.

3. Results

All three trained networks can generate novel motion
sequences that complete the given input sequence, while

maintaining inter-joint relationships to varying degrees. Ex-
amples of the generated motions are included in the sup-
plementary materials. From visual observation alone, the
LSTM network with 3 layers maintains inter-joint relation-
ships for the longest number of time steps and shows better
motion variety. However, in order to make this analysis more
rigorous, we perform quantitative evaluation of the quality
of the motion.

Quantifying the quality of the generated motions is
difficult due to the strongly qualitative nature of human
motion. One way to measure the correctness of motion
is by evaluating the network’s understanding of inter-joint
relationships. This is done by computing the distance of
each joint from its parent and taking the difference from
the original distance of this link. We can further average
this result over all the joints in the skeleton and take the
absolute value to obtain an average of this measurement over
all joints. We will denote this metric by the name Inter-Joint
Variation (IJV). For a single frame, the IJV averaged over
all joints is given by the expression

K-—1
1
UV =+ D lIsi=spllz = vi=vpallz|, @
=0

where the vectors s;, s,(;) € R3 are the position coordinates
of the joint ¢ and joint i’s parent respectively. The total
number of joints is denoted by K (this is 64 in our case).
The function p(7) is a discrete-valued function that returns
the identifying number for the parent of joint ¢. Similarly,
v; and v,,(;) are arbitrary position coordinates for the same
joints and for the same skeleton (typically from the original
recorded motion file) which can serve as the ground truth. It
should be noted that the actual values of v; and v,,(;) don’t
matter and that it is the length of the link connecting these
joints is what is important for this measurement. In our case,
as ground truth, we simply use the inter-joint distances in
the first frame in the sequence of interest. Figure || provides
a visualization of this measurement for each model at each
frame, averaged over all samples. It can be seen that the
IJV values for LSTM3 grows slowest in comparison with
the other two models.

Measuring the joint relationships on their own may not
always be an accurate quantification of the quality of motion,
since it is possible that the network outputs sequences with
little to no movement, and yet small IJV values. Therefore,
we use an additional metric that measures motion energy,
which for a sample F € R™*™ can be computed as follows:

m 1 nz Y (Fij = Fig-1)® (3)

i=1 j=2

FE =

Here, F; ; is the element at row ¢ and column j, m is the
number of degrees-of-freedom of all joints (192 in our case),
and n is the number of frames in the sequence. Consider the
two graphs shown in Figure [3|illustrating the performance of
each network (in the IJV sense) as we restrict the samples
to a subset with mean energy exceeding the threshold on
the horizontal axis (top). The graph at the bottom shows the

1.4} - i

v

— LSTM1
—LSTM2 1
LSTM3

\ \ \
100 150 200 250 300 350 400
Frames

Figure 1. IJV measurements for each model, shown at each frame, averaged
over all samples.

TABLE 1. ANALYSIS RESULTS OF THE MOTION SEQUENCES
GENERATED BY THE THREE MODELS, AVERAGED OVER ALL 500
SAMPLES AND ALL 400 FRAMES PER SAMPLE.

Avg. Measurements Over All Samples

Joint LSTMI1 LSTM2 LSTM3 Ground Truth
IVaug 1.150 cm 1.472 cm 0.939 cm 0.0 cm
MIDgyg4 6.675 cm 13.643 cm 6.975 cm 5.608 cm
Energyauvg 1.128 6.306 1.028 0.409
Energysiq 1.247 15.156 1.387 1.319

distribution of these energies, visualized in the same manner
by representing each point in the graph as the measurements
on the restricted subset of samples exceeding a mean energy
threshold. The purpose of this analysis is to study how the
network’s understanding of joint relationships changes in
relation with the energy level. Additionally, it illustrates
the proportion of the samples for which IJV measurements
are made in the top graph. One can also think of the
energy measurement as a measure of the average amount
of motion in a sequence, such that motion sequences with
faster movements will have more energy than motions with
slower movements.

A straight-forward metric is the euclidean distance be-
tween consecutive frames, which can be a reasonable ap-
proach to quantify the motion similarity between consecu-
tive frames. We compute this result using the equation

1 n
MID = =3 |6 = £l o
j=2

where we denote by f; € R'2*! the jth frame in the
sequence. This result can then be averaged over all samples.
Table [I] shows these measurements for all samples for each
model, in order to provide a general comparison of the

quality of the motion generated by each network. We convert
the IJV results to the physical unit of centimeters in order
to provide an intuitive sense of the errors. IJV and MID are
calculated as shown before and averaged over all samples.
On the third row, Energy,,, shows the average energy as
calculated by equation [3] The last row, Energy,;q, shows the
standard deviation of the energy of all samples. The fourth
column shows these measurements for the 500 samples from
the data set reserved for motion synthesis. It can be argued
that LSTM3 shows the best capacity for novel and realistic
motion synthesis and maintaining inter-joint relationships.

Figure [2] shows the 1JV values for each joint averaged
across all models and all samples. This illustration aims to
highlights the joints which seem to be most problematic
for our models to learn. One possible explanation for the
severity of the errors at the fingers is that finger motions
can be very complex, while leg joints, for example, remain
mostly similar over the data set.

Figure 2. IJV values averaged across all models for each joint.

4. Conclusion

We have studied three different LSTM models for human
motion synthesis for a detailed skeleton with 64 joints. Anal-
ysis shows that the three-layered LSTM architecture, with
1000 nodes in each layer, produces motions that are most
realistic when compared to the single-layer and the 2-layer
LSTM networks. The LSTM3 network can maintain good
inter-joint relationships which extends up to 400 frames.
Analysis has also shown that, overall, these models can
reasonably accurately maintain joint relations for the spine,
neck and legs, but they faces some difficulty in maintaining
these relations for the more detailed segments of the skeleton
such as hand fingers.

2.6

— LSTM1
24+ ——LSTM2 B
LSTM3

S
" O L_H

= P
= A e T
1.6 - L /A; 4
L4p |
1.2 B
1 -
0.8 ! !
0 5 10 15
Mean Energy Threshold
1
L\
|\ ——LSTM1
091 | ——LSTM2
Vo LSTM3
081 \ —— Ground Truth
» 0.7H | \ 7
2 (-
) \ \
06 | \ 1
5t \ \
ks
=] 0.5 & \\ 7
2 | .
g 04 \‘ \. g
2 \ N
FoosH) N ,
A\ \“\\
0.2+ \\ \ ™ — g
VN I
B A —
0 =

0 5 10 15
Mean Energy Threshold

Figure 3. IJV at each frame averaged over all samples for each model (top)
and its relationship with the energy measurements shown in the bottom
graph.

We can also observe that the two-layered LSTM archi-
tecture is an exceptionally bad model for human motion
synthesis, even more so than the single-layered model. This
may be due to the fact that the two-layer model is not robust
against over-learning (like LSTM1), while it still does not
possess the expressive power that the LSTM3 has. However,
more research is needed in order to confirm this observation
and to consider even deeper models than the three-layer
model.

In the future, we aim to make use of a larger dataset
and of specific motion types. Such a data set may allow
more control over the motion categories generated. More
specifically, we wish to build on the work in [IZI], which uses
a data set of recordings of a dancer, and extend it to other

motion categories such as walking, sprinting, crawling, or
even different dancing styles.

Additionally, we wish to examine the effect of larger
models in terms of layers and number of neurons in each
layer on maintaining joint relations. We expect that deeper
and more complex models will show better capacity for
maintaining detailed joint relations such as hand fingers and
feet.

Finally, we plan to investigate the impact of
semantically-rooted regularization techniques. The intuitive
motivation behind this is to allow incorrect outputs (in the
MSE sense) of the network that honor inter-joint relations
to have less of an impact on the direction of the gradient
while training. This could however, in theory, result in a
worst case scenario where the network always outputs the
same pose, but further studies are needed.

5. Supplementary Material

Video links showing the motion sequences generated by
each model. Sequences with the blue skeleton are the input
sequences feed to the network. Motion sequences in green
are generated by the network.

o [LSTMI

o LSTM2

« [LSTM3
Acknowledgments

This work was supported by the research infrastructure
of Center for Immersive Visual Technologies CIVIT, Tam-
pere University of Technology. The training and testing data
was collected and provided by Keho Interactive Oy.

References

[1] Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural net-
works for image classification. In Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on 2012.

[2] Crnkovic-Friis L, Crnkovic-Friis L. Generative Choreography using
Deep Learning. arXiv preprint arXiv:1605.06921. 2016.

[3] Eck D, Schmidhuber J. A first look at music composition using
Istm recurrent neural networks. Istituto Dalle Molle Di Studi Sull
Intelligenza Artificiale. 2002.

[4] Fragkiadaki K, Levine S, Felsen P, Malik J. Recurrent network models
for human dynamics. In Proceedings of the IEEE International Con-
ference on Computer Vision 2015.

[5] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual
prediction with LSTM. Neural computation. 2000.

[6] Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. In Aistats 2010 (Vol. 9, pp. 249-256).

[7]1 Glorot X, Bordes A, Bengio Y. Deep Sparse Rectifier Neural Networks.
In Aistats 2011 (Vol. 15, No. 106, p. 275).

[8] Graves A. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850. 2013.

[9] Graves A, Jaitly N. Towards End-To-End Speech Recognition with
Recurrent Neural Networks. In ICML 2014 (Vol. 14, pp. 1764-1772).

[10] Geijtenbeek T, van de Panne M, van der Stappen AF. Flexible muscle-
based locomotion for bipedal creatures. ACM Transactions on Graphics
(TOG). 2013;32(6):206.

[11] Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D. DRAW:
A recurrent neural network for image generation. arXiv preprint
arXiv:1502.04623. 2015.

[12] Hochreiter S, Schmidhuber J. Long short-term memory. Neural com-
putation. 1997 Nov 15;9(8):1735-80.

[13] Hochreiter S. The vanishing gradient problem during learning recur-
rent neural nets and problem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems. 1998;6(02):107-16.

[14] Holden D, Saito J, Komura T, Joyce T. Learning motion manifolds
with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical
Briefs 2015 (p. 18).

[15] Holden D, Saito J, Komura T. A deep learning framework for char-
acter motion synthesis and editing. ACM Transactions on Graphics
(TOG). 2016;35(4):138.

[16] Kanda N, Takeda R, Obuchi Y. Elastic spectral distortion for low
resource speech recognition with deep neural networks. In Automatic
Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop
on 2013 (pp. 309-314).

[17] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems 2012 (pp. 1097-1105).

[18] Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A
convolutional neural-network approach. IEEE transactions on neural
networks. 1997;8(1):98-113.

[19] Le QV, Jaitly N, Hinton GE. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941.
2015.

[20] Nayebi A, Vitelli M. GRUV: Algorithmic Music Generation using
Recurrent Neural Networks. 2015.

[21] Parkhi OM, Vedaldi A, Zisserman A. Deep Face Recognition. In
BMVC 2015 (Vol. 1, No. 3, p. 6).

[22] Reil T, Husbands P. Evolution of central pattern generators for bipedal
walking in a real-time physics environment. IEEE Transactions on
Evolutionary Computation. 2002;6(2):159-68.

[23] Saxe AM, McClelland JL, Ganguli S. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120. 2013.

[24] Sims K. Evolving virtual creatures. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques 1994 (pp.
15-22).

[25] Taylor GW, Hinton GE. Factored conditional restricted Boltzmann
machines for modeling motion style. In Proceedings of the 26th annual
international conference on machine learning 2009 (pp. 1025-1032).

[26] Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning. 2012;4(2).

https://www.youtube.com/watch?v=v_WTs5EXT3c
https://www.youtube.com/watch?v=jTxqGgwFWPk
https://www.youtube.com/watch?v=9-Eol83xZZA

	Introduction
	Methods
	Data preparation
	Network architecture

	Results
	Conclusion
	Supplementary Material
	References

