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Abstract—Symmetry detection algorithms are enjoying a ren-
ovated interest in the scientific community, fueled by recent
advancements in computer vision and computer graphics ap-
plications. This paper is inspired by recent efforts in building a
symmetric object detection system in natural images. In particu-
lar, it is first shown how correlation can be a core operator that
allows finding local reflection symmetry points in 1-D sequences
that are optimal in an energetic sense. Then, the importance of 2-
D correlation in natural images to correctly align the symmetric
object axis is demonstrated. Using the correlation as described is
crucial in boosting the performance of the system, as proven by
the results on a standard dataset.

Keywords–Normalized Cross-Correlation; Reflection Symmetry
Detection; Content-Based Analysis; Feature Extraction Methods.

I. INTRODUCTION

Minimal distance between waveforms is known to maximize
their cross-correlation. In digital communication, optimal re-
ceiver characteristics correspond to looking for the maximum
crosscorrelation between the ideal noise-free candidate wave-
forms associated to the transmitted symbol and the actual re-
ceived signal [1]. As another example, peaks in the normalized
cross-correlation between a 2-D patch and a reference frame
lead to finding the optimal shift that the patch has undergone in
time describing its apparent motion, a major component used
for redundancy reduction for digital transmission of digital
video [2]. None of these methods however have considered
the effect of mirrored versions of the waveform/patch which
are instead clearly present in many natural signals (whether 1-
D or multidimensional) as key patterns. This paper describes
how correlation between a waveform and its mirrored version
is a key concept to be considered.

In particular this paper explores the crucial role taken by
correlated data in the workflow of a system proposed for
symmetric object detection in natural images. We refer here
to the most common symmetry found in both natural and
manmade objects in natural images, the reflection symmetry.
This is the most interesting of the symmetry kinds, which
comprise translational and rotational symmetry as well, since
it is well established that this is the most prevalent attribute in
human visual perception (see [3] and references therein). From
a physiological point of view, it is clear that much processes
takes place in the cerebral cortex during object recognition
tasks, and that symmetry detection is an important one of them
[4] [5].

Computer vision researchers have recently attempted to
replicate the brain efforts through the design of a suitable
algorithm for symmetric objects detection. Such an interest
culminated with a pair of dedicated workshops at the CVPR
conference in 2011 and 2013, reporting the results of a
competition for symmetric objects detection. In the 2013

iteration of the competition [6], two methods gave the best
results. The first method [7] exhibits best results in single and
multiple symmetry axis detection with recall rates lower than
approximately 80%. It is based on a rotation invariant feature
like SIFT descriptors, which create constellations of interest
points that are finally matched. The second method [8] reports
slightly better results in presence of high recall ratios. It uses
SIFT descriptors in combination with gradient-based weighting
to choose symmetry candidates that are then validated using
a principled statistical approach. In the end, the results of the
competition are still far from good performance. Looking for
symmetric objects in natural images has even been proposed
as a Turing test alternative to classic character-based queries
[9]. Recent advances such as [10] have since improved the
previously reported results on the CVPR 2013 competition
database. This latter method, in particular, extracts robust,
multi-scale 4-D Appearance of Structure descriptors computed
through the detection of important local edges.

As it is well established in pattern recognition whether in 1-
D or higher dimensions, correlation has a preeminent role, both
in still images and in video, particularly in the techniques col-
lectively known as appearance-based matching [11]. In those
applications, the objective is to correlate some object char-
acteristics, more commonly features extracted from the target
object, with those possibly present in the considered content.
The object detection works by correlating, in a wide sense,
the target object features, under the prescribed application-
dependent constraints, like scale- and rotation-invariance and
robustness to occlusions, with those extracted from the content.
This problem encompasses a number of design challenges,
such as feature selection, classification algorithms and so on.
However, in general there is no particular explicit interest in
the correlation present in the features and/or data themselves to
match the target object template to the corresponding object
besides the implicit reduction in the information needed to
represent the object.

The approach followed by in this paper is different, par-
tially driven by the application aimed at by the proposed
system. In the case at hand, there is no target object(s) to
detect in a given image. Instead, we want to assess whether
a symmetric object, whatever it may be, is indeed present.
The only quality of the objects we are interested in is their
symmetric appearance, so there is no way in which template-
matching techniques can work in this case. It turns out that 2-
D correlation is a crucial characteristic to tie what is detected
merely as a symmetric signal to an actual symmetric object
detection.

The question on how to exploit the particular correlation
displayed by reflection symmetric data is tackled in two sep-
arate stages by the symmetric objects detection method. First,
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we cast the symmetry detection problem in the 1-D signals
scenario and prove that correlation is at the core of its solution.
Then, we move on to the search for the best local symmetry,
still for 1-D signals, to prepare for the intended application.
Last we extend the 1-D approach to 2-D, namely natural
images. Here, correlation takes another, separate role in the
success of the application. In particular, 2-D spatial correlation,
which is inherent in the images content, helps to correct for
errors in the symmetry placement as well as reinforce belief
in the symmetry presence since it has a denoising effect on
inconsistent symmetries found in adjacent rows.

The rest of the paper is organized as follows. In Section II
the role of the correlation is considered for the detection of
local symmetry points for 1-D sequences, in particular tying
the concept of an optimal symmetry point found through the
even/odd decomposition of a given sequence with the search
for local maxima through the cross-correlation of a windowed
sequence and its flipped version, namely leading to a self-
convolution operation. In Section III instead the peculiar role
of 2-D correlation is considered for handling the natural images
domain, in particular showing how it allows to precisely detect
main symmetry axes of symmetric objects. Conclusions are
finally drawn in Section IV.

II. CORRELATION FOR SYMMETRY DETECTION IN 1-D
SIGNALS

This work starts its analysis on the nature of correlation in 1-D
discrete data for symmetry detection. This Section highlights
the main takeaway in this domain, that is the use of the basic
even/odd signal basic decomposition. Thus, it is shown in an
analytic way that correlating a windowed sequence with its
mirrored version is the optimal approach to detect a reflection
symmetry in 1-D data, which is also a satisfyingly intuitive
result. Then, in the next Section the analysis is extended to
the 2-D domain, and shows how 2-D spatially correlated data
in images help in detecting symmetric objects as well.

Let us consider a real, finite-energy, 1-D discrete sequence
x[n], supposing for simplicity sake that it has a finite support.
The even/odd decomposition states that x[n] can be expressed
as the sum of an even sequence xe[n] such that xe[n] = xe[−n]
and an odd sequence xo[n] such that xo[n] = −xo[−n], as
follows:

xe[n] =
x[n] + x[−n]

2
; xo[n] =

x[n]− x[−n]
2

(1)

and x[n] = xe[n]+xo[n]. It is readily observable that xe[n] and
xo[n] are orthogonal in the sense that their inner (or scalar)
product that is defined as < xe[n], xo[n] >=

∑
n xe[n]x

∗
o[n]

is 0. This also implies that the energies of xe[n] and xo[n],
respectively Ee and Eo, sum up to the energy E of x[n].
Of course, this suggests a simple approach to determine how
much (anti)-symmetric a sequence is around the time origin
n = 0. After decomposing the signal x[n] along the lines of
Eq. (1), if x[n] is prevalently even (resp. odd) the energy of
the even sequence xe[n] is more (resp. less) than half of E, so
comparing the latter sequences’ energies is sufficient to hint
at the symmetry properties of x[n].

It is possible to generalize Eq. (1) in such a way to
encompass also symmetries whose center is not in the time
origin n = 0. To do that, it is necessary to flip the sequence

around n = m and Eq. (1) thus become:

xe[n;m] =
x[n] + x[2m− n]

2
; xo[n;m] =

x[n]− x[2m− n]

2
(2)

and x[n] = xe[n;m] + xo[n;m]. Now, the objective is to
evaluate the time instant where the sequence is maximally
either even or odd. Focus is on the even case, since this
addresses the issue of reflection symmetry detection. So,
studying the energy Ee(m) of the even sequence xe[n;m] as
a function of the symmetry center m we have:

Ee(m) =
∑
n

|xe[n;m]|2 =
∑
n

∣∣∣∣x[n] + x[2m− n]

2

∣∣∣∣2 =

=
1

4

∑
n

|x[n]|2 + |x[2m− n]|2 + 2x[n]x[2m− n] =

=
1

2
E +

1

2

∑
n

x[n]x[2m− n] =
1

2
E + (x ∗ x)[2m] (3)

where in the last passage (x ∗x) represents the convolution of
the discrete sequence x[n] with itself (termed in the following
as “auto-convolution”). Thus, the optimal even symmetry point
n0 satisfies the condition:

2n0 = arg max
m

(x ∗ x)[m] (4)

Therefore, n0 is found by analyzing where is the maximum
of the auto-convolution of x[n]. As a matter of fact, as the
factor 2 in Eq. (4) suggests, the globally optimal symmetry
point is determined with a half-pixel accuracy. It is in fact
possible that a perfectly even signal is symmetric around a
half-integer folding point: Fig. 1 depicts with a very simple
example the two types of even symmetries that can be defined
for discrete-time sequences.

Finding n0 as in Eq. (4) yields the globally optimal (even)
symmetry point, in the sense that, among all the time instants
around which to evaluate the energy of the even sequence,
choosing n0 guarantees that Ee(n0) is the maximum. That
however does not mean that x[n] possesses an even symmetry
centered around n0. As a matter of fact, all the other local
maxima of the auto-convolution do not necessarily correspond
to (possibly minor) local symmetries as well.

To explain why the correspondence between local sym-
metries and extreme points of the auto-convolution is not
straightforward, let us analyze the simplified example case
depicted in Fig. 2. The signal x[n] of Fig. 2a has a couple

0

0

n0

(a) Case with integer n0.
0

0

n0

(b) Case with half-integer n0.

Figure 1: Comparison of two even signals displaying resp. in-
teger and half-integer optimal symmetry points.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 844



of very clear even symmetries that are easy to spot, a left
one where a perfectly triangular impulse is located and a right
one with an approximately Gaussian impulse. The dotted red
and black lines in Fig. 2a represent the vertical symmetry
axes associated with the ideal symmetry points n1 and n2.
These local symmetries are immersed in white noise having
comparable energy, which may even be locally symmetric
by chance but obviously in a far less obvious way than the
impulses. What would ideally be expected is to find two
extreme points in correspondence to the symmetric impulses
(and not one in between since they have different shape).

In Fig. 2b we have reported the auto-convolution computed
on the whole sequence, as dictated by Eq. (3). The red and
black circles illustrate the position of 2n1 and 2n2 (recall that
in Eq. (4) there is a multiplicative factor 2), corresponding
to the desired symmetry points. The maximum of the auto-
convolution is nowhere near those positions, and no local
maxima are even associated to the desired locations. This
happens because the auto-convolution value computed near the
center of the symmetric impulses also depends on the non-
symmetric portion of the signal as well as other symmetric
impulses. In the end, the clearly perceived symmetries in
Fig. 2a are not detectable in Fig. 2b.

Therefore, it is clear that the noise outside the symmetric
parts of the signal must be neutered. To do this, a possible
solution is to employ “windows”, that is to limit the extent

50 100 150 200 250n1 n20

1

2

3

0

(a) The original signal, with an ar-
tificially created, clear local even
symmetries. The associated symme-
try axes are also drawn.

2n1100 2000
0

300 400 5002n2

100

200

300

(b) The global auto-convolution of the
signal shown in Fig. 2a, with the local
symmetries’ position marked.

2n1100 2000
0

300 400 5002n2

100

200

2np

(c) Windowed auto-convolution of the
signal shown in Fig. 2a. A high en-
ergy, weaker symmetry can dominate
a low energy, stronger one due to the
lack of energy normalization.

2n1100 2000
0

300 400 5002n2

0.2

0.4

0.6

0.8

1

2np

(d) Windowed and energy normal-
ized auto-convolution of the signal of
Fig. 2a. Now, the correct even sym-
metries are dominant.

Figure 2: The effect of windowing and normalization of the
auto-convolution to improve the search for local symmetry.
The borders are set to 0 (where windows go out of bounds).

of the convolution support computed for a given symmetry
center. This process may at first look similar to the one in
[12]. However, in that work the search for local symmetry
still took inspiration from a reasoning similar to that conveyed
by Eq. (4) but actually performed in a totally different way.
There, the overall auto-convolution were computed and then all
local extrema were considered as starting candidate symmetry
points. These candidates were then ranked by computing
the even/odd decomposition, and the consequent energy de-
coupling, in increasingly larger windows around them as a
validation process. This entire process was devised to both
filter out those maxima that are false positives caused by noise
and to compensate for the imprecise symmetry point location,
which however is not corrected by the validation process.

In this paper, the auto-convolution is computed on a local
window from the start. This way, the part of the signal that
is not contained in the window support centered around the
considered location can not influence the auto-convolution
computation. In Fig. 2c the effect of the windowing is pretty
clear since now the red and black circles clearly mark two
extreme points. Still, the detected symmetry, namely the max-
imum of the windowed auto-convolution, is offset towards the
center of the signal. In the end, even if the found optimal
symmetry is not as discernible as the desired local ones, it
shows a higher auto-convolution value because the energy
of the windowed sequence is higher. This problem can be
alleviated by normalizing the windowed auto-convolution by
the energy of the sequence contained in the window. Therefore,
the resulting windowed and normalized auto-convolution is
illustrated in Fig. 2d. Of course, the value is now confined
in the [0, 1] interval. The red and black circles now correctly
identify the two main local symmetries exhibited by Fig. 2a.

The extent of the window is of course an important
parameter that may be adjusted as needed using a procedure
similar to that adopted in [12]. However, to keep the discussion
simple, for the rest of the paper fixed-length windows covering
np = 100 locations around each extreme point are employed.
This window size is a good tradeoff between keeping low
the number of false positives while still achieving sufficient
denoising in the auto-convolution computation.

To summarize, computing the auto-convolution considering
just the portion of the signal belonging to a window centered
on a given location is in effect equivalent to computing the
cross-correlation of the windowed sequence and its mirrored
version. This is also quite satisfying as an intuitive insight:
the best local symmetry point is the one where the windowed
sequence correlates the best with its flipped version. Note how,
using windows, it is not necessary to search for the maximum
of the windowed auto-convolution, since that would produce
the optimal symmetry point of the window. Instead, we can just
slide the window and then compare the above cross-correlation
among all the possible window center locations. These cross-
correlation values must be normalized by the windowed energy
sequence to make the comparison of the symmetry extent
possible. We can thus define a measure of symmetry S(W )
associated to a given window W that covers 2np+1 positions,
as follows:

S(W ) =

∑np

n=−np
x[n] · x[−n]∑np

n=−np
|x[n]|2

(5)

Recall that Eq. (4) outputs the globally optimal symmetry

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 845



point with half-pixel resolution. If we want to retain the same
resolution even after windowing the auto-convolution as in
Eq. (5), it follows that the window should be centered at half-
integer positions. If the computation is confined to the original
samples x[n], it may be a problem to keep the number of
positions inside W invariant when centered in either integer
or half-integer positions. The simplest solution is to interpolate
x[n] by a factor of 2, doubling np and compute S(W ) on the
interpolated image, so that such computation uses consistent
values for adjacent symmetry positions.

III. CORRELATION FOR SYMMETRIC OBJECT DETECTION
IN NATURAL IMAGES

As described in Section II, the cross-correlation between a
windowed 1-D sequence and its mirrored version, whose
window center is shifted across the signal, allows to locate
the position of the optimal local symmetry. In this Section,
we extend the method for the identification of the main local
symmetry axes in a given image I , thus hopefully identifying
symmetric objects therein. The first step towards the main
objective is to compute a symmetry value for each pixel of
I and for each direction of the symmetry. Regarding the axes
direction, however, we will limit the discussion to the vertical
axis since the method can be promptly applied to any direction
by first suitably rotating the image. Therefore, searching for
symmetric objects means to analyze the rotated image along
its rows, however for the vertical axis direction considered in
this paper there is no need to rotate the original image I .

One straightforward extension of the 1-D search for local
symmetric points would be to apply Eq. (5) on each row of
the image and then connect found maxima on different rows
to identify the symmetric axis of the symmetric object. Thus,
it could be expected that for all the rows associated to the
symmetric object a local maximum is to be found where the
symmetric object axis is placed. If this would be the case,
simply connecting the extreme points in each row along the
vertical direction would output the vertical symmetry object
axis. This is actually a sound strategy as opposed to just taking
the symmetry value. In fact, searching for the local maxima of
the symmetry values is more important than the absolute value
of the coefficient itself since its relationship with respect to its
neighboring coefficients can correctly place the center of the
symmetric pattern regardless of the nature of the pattern. A
flood-fill algorithm can then be applied to connect the extreme
points and thus all possible reflection symmetries are defined
by a set of segments that join the local maxima found in
adjacent rows.

However, Fig. 3 shows how such an approach does not
work on natural images with an example. In particular, the
left column of Fig. 3 depicts the found local maxima when
separately analyzing the rows of the image. Fig. 3a shows that
the detected points (blue crosses) do not always correspond
to the symmetric object axis (red line), thus in the end the
detected axis may be broken up or missed altogether. In those
rows where the symmetry is off center the illumination and
the textures combine to shift the 1-D local symmetry in the
data. For example, let us analyze the row highlighted in blue in
Fig. 3b. The black circle represents the ground-truth symmetry
location and the 1-D window is depicted with the white line,
when the window is indeed centered in the black circle’s
position. The sliding auto-correlation value given by Eq. (5)

is plotted in Fig. 3c, and the maximum (the blue cross which
corresponds to the one in the same row of Fig. 3b) is actually
to the left of the desired location. This is a case where the true
symmetry of the 1-D data and the perceived symmetry differ,
in this case due to noise and local shadows, but that could also
be caused by clutter and partial occlusions of the object.

However, our brain is able to effectively use the reflection
symmetry information in the whole 2-D neighborhood, in
effect exploiting the 2-D correlation in the image data. So,
when perceiving the symmetric object the fact that the posi-
tioning of the actual symmetry in each 1-D row is imprecise
is not important, in fact our brain can easily spot the vertical
symmetry and extend it all the way. To adequately mimic such
process, we propose to simultaneously compute a number of
1-D correlations in adjacent rows. In the end, what is actually
computed for a given position to measure its level of symmetry
is a windowed and normalized auto-convolution as before, but
integrated on a 2-D square patch along the vertical direction

(a) Wrong symmetry placement using
the 1-D auto-convolution. The blue
crosses represent the local maxima
for each considered row (skipping
some for clarity); the red line is the
ground-truth symmetry axis.

(d) Correctly detected symmetry axis
using 2-D auto-convolution. The blue
crosses lie very close to the ground
truth axis.

(b) The 1-D auto-convolution is com-
puted on a 1-D window (white line).
The black circle, lying on the red line,
shows the desired location of the local
maximum.

(e) The 2-D auto-convolution is in-
stead computed on a 2-D patch (white
square).

200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) The 1-D auto-convolution com-
puted along the blue line in Fig. 3b.

100 200 300 400 500 600 700 800 900 1000

−0.5

0

0.5

1

(f) The 2-D auto-convolution com-
puted along the blue line in Fig. 3e.

Figure 3: Examples of a vertical symmetry axis detection,
showing how computing the auto-convolution simultaneously
on a 2-D patch instead of separately for each 1-D row permits
to significantly correct the location of the symmetry.
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instead of on a 1-D window. So, instead of computing S(W )
as in Eq. (5), we compute S2(P ) for any position in the center
of the patch P :

S2(P ) =

∑mp

m=−mp

∑np

n=−np
x[m,n] · x[m,−n]∑np

m=−np

∑np

n=−np
|x[m,n]|2

(6)

Computing the symmetry measure on the 2-D patch is in the
end very beneficial to accurately place the symmetry location,
as it is shown in the right column of Fig. 3. In Fig. 3d
the almost perfect alignment of the detected symmetries to
the ground-truth symmetry axis is depicted. Fig. 3e again
exemplifies the process with the same row (in blue) considered
in Fig. 3b, but this time the symmetry measure S2, for
the ground-truth symmetry location represented by the black
circle, is computed on the 2-D patch drawn in white according
to Eq. (6). Looking at the evolution of such measure along
the row positions, as illustrated in Fig. 3f, it can be seen
that the maximum is perfectly placed, i.e. the black circle is
superimposed to the blue cross in the same row of Fig. 3e. In
this case, therefore, the local symmetry is correctly tracked.

So, to summarize there are two key factors to achieve
good performance of this application in natural images that are
tightly connected with the concept of 2-D vertical correlation.
First, the computation of the symmetry measure with respect
to an entire 2-D patch centered around any one pixel location
to compensate for noise or slight changes in the symmetric
appearance: the 2-D neighborhood correlation (in presence
of a symmetry) will boost a local maximum in the center
of the patch. In addition, the presence of a local maximum
is sufficient regardless of its value, i.e. there is no need for
local thresholding, given that the integration effect of the 2-D
patch will avoid any fluctuation of the symmetry measure. The
second pivotal component is the validation of the consistency
of the local maxima through the connectivity analysis carried
out along each expected orientation of symmetry, in effect
extending the 2-D vertical correlation to neighboring patches.
This reinforces the belief that a symmetry is present while
also allowing to define the extent of each symmetry segment.
These important characteristics that depend on correlation
allow to achieve very good performance in terms of precision-
recall curves on the 2013 CVPR competition dataset, that are
reported by Fig. 4. Details on the experimental procedure, that
comprise both single and multiple symmetry axes detection
scenarios, can be found in [6].

The computational complexity of the method is fairly low:

0
0

1

1

(a) Single axis test scenario.

1

1
0

0

(b) Multiple axes test scenario.

Figure 4: Precision-recall curve of the proposed algorithm on
the competition dataset compared with those in [6] and [10].

on a standard desktop computer, the analysis of the symmetry
axes on each angle for a 256 × 256 image takes on average
slightly more than 1s. We end by noting that the result is robust
to slight changes of the patch size (as we mentioned, in the
conducted experiments reference size was set to np = 100).
The patch size needs to represent only relevant data (which
means confined to the extent of the symmetry), avoiding losing
the coherence of local maxima. It can easily be expected
that an appropriate multiresolution approach (image pyramid)
would allow to find hierarchies of symmetries in the data.

IV. CONCLUSIONS

In this paper we explored the role of correlation for the identifi-
cation of data symmetries. First, it is analytically derived how
correlation in 1-D sequences allows to find local reflection
(i.e. even) symmetry points, in particular by computing the
cross-correlation between the signal confined in a window
and its mirrored version, normalized by the energy of the
windowed signal. Then, the approach is extended to the
search for symmetry in natural images, proving that naively
applying the 1-D correlation is insufficient. Instead, exploiting
the 2-D correlation in a square patch permits to correctly
place the symmetry axis and also to reinforce belief in its
presence. Furthermore, by joining detected symmetry points
with a flood-fill algorithm also extends the 2-D correlation
across adjacent patches. In the end, correlation in both the
direction of the symmetry axis and the one orthogonal to it
can be effectively used to boost performance, regardless of
any particular feature being used.
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