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Abstract—This paper aims to present a methodology for
health monitoring wind turbine gearboxes using vibration data.
Monitoring of wind turbines is a crucial aspect of maintenance
optimisation that is required for wind farms to remain sustainable
and profitable. The proposed methodology performs spectral line
analysis and extracts health features from harmonic vibration
spectra, at various time instants prior to a gear tooth failure.
For this, the tachometer signal of the shaft is used to reconstruct
the signal in the angular domain. The diagnosis approach is
applied to detect gear faults affecting the intermediate stage of
the gearbox. The health features extracted show the gradient
deterioration of the gear at progressive time instants before the
catastrophic failure. A classification model is trained for fault
recognition and prognosis of time before failure. The effectiveness
of the proposed fault diagnostic and prognostic approach has
been tested with industrial data. The above will lay the ground-
work of a robust framework for the early automatic detection of
emerging gearbox faults. This will lead to minimisation of wind
turbine downtime and increased revenue through operational
enhancement.

I. INTRODUCTION

The challenges of climate change and energy security over
the past years have increased the necessity to harvest wind
energy. The cost of energy from wind farms is one of the
main barriers that is currently restricting this renewable energy
generation from being more widely adopted. Operation and
maintenance costs constitute a large proportion of the total
cost of energy from wind. Therefore, increased reliability
plays a key role in reducing both those costs and the wind
turbine downtime. Reliability can be increased through con-
dition based maintenance, which is a form of preventative
maintenance that involves continuous health monitoring of a
wind turbine unit [1].

The wind turbine gearbox that bears alternating loads, is
one of the most affected parts in a wind turbine, in terms of
reliability [2]. Common failure modes include gear or bearing
pitting, scuffing and fracture. If breakdown of the gearbox
occurs it significantly increases the downtime and it is the most
expensive component to maintain throughout the expected 20-
year design life of a wind turbine. Effective health diagnosis
of the gearbox is therefore vital in wind turbine fault detection
and decision making.
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Owing to the recent developments in the field of sensing and
signal processing, modern wind turbines are equipped with
condition monitoring systems for the on-line active remote
monitoring of their components. Different type of sensory sig-
nals include vibration and electrical signals. Vibration analysis
is one of the most commonly used mechanisms for condition
monitoring of wind turbines. Based on the different vibration
signatures, spectral line analysis methods measure the increase
in the frequencies of the impulse signals and can indicate when
a component failure is about to occur [3].

Vibration analysis is a particularly used to monitor the
condition of gears. It requires the installation of acceleration
transducers on the gearbox surface, which offers sensitivity in
recognising faults. The main features that differentiate wind
turbines from conventional rotary machines are the operating
conditions under parameters of speed and variable load. Due
to the rotor speed variation within the time window of the
data acquisition, conventional signal processing techniques are
insufficient because smearing into multiple bins can occur in
the frequency domain. Therefore, computed order tracking is
used and its principles are explained in [4]. An automated
methodology that performs time synchronous averaging in a
gearbox with limited speed variations that does not include a
speed sensor is presented in [5]. Different vibration analysis
methods are evaluated and presented in [6]. In terms of
diagnosis methods, spectral kurtosis has been used to detect
a tooth crack in the ring gear of a wind turbine planetary
gearbox [7]. Sideband energy ratio can be calculated from
spectrum data and it is sensitive to amplitude and frequency
modulation, giving an indication of the health state of the
gear [8]. Severity factors based on the sideband and kurtosis
analysis are assigned in a diagnosis framework in [9]. As far
as fault recognition via machine learning is concerned, an
overview of Support Vector Machine (SVM) techniques for
fault diagnosis and monitoring in engineering applications is
presented in [10].

The above mentioned literature provides useful research
approaches on wind turbine condition monitoring. However,
the amount of data collected from the wind turbine and the
complexity of this system call for an automated diagnostic
process. Hence, this paper aims to present the groundwork
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Fig. 1. Gearbox Internal Nomenclature

for the development an automatic gear fracture detection and
prognostic methodology in a wind turbine gearbox, based on
vibration signals. First of all, Section I introduces the papers
motivation of research and refers to the research background
which involves the analysis of the vibration signals and
the fault detection process, taking into account the variable
speed of the turbine. In Section II the structure of a wind
turbine gearbox is explained and the proposed methodology is
presented. Section III demonstrates the implementation of the
methodology in real wind turbine vibration data. Section IV
presents the results of the case studies and Section V concludes
with the discussion and future work for the methodology
development. The novelty in this paper is in the combination
of identification techniques used to detect the failure and in
the high quality data and failure example used to demonstrate
the techniques in the case study.

II. METHODOLOGY

A. Wind Turbine Vibration Signal

1) Wind Turbine Gearbox Structure: A wind turbine gear-
box is used to increase rotational speed from a low-speed rotor
to a higher speed electrical generator. Since both compactness
and high transmission ratio are desired, a typical wind turbine
gearbox consists of three stages: one low speed planetary
stage (PS) and two parallel stages, namely a high speed (HS)
stage and an intermediate speed (IS) stage. The main shaft is
connected to the planet carrier (PLC) and the HS pinion of
the gearbox is geared to the generator.

The gearbox internal structure is shown in Figure 1 and the
fundamental gear mesh frequencies (GMF) are determined in
Table 1.

2) Wind Turbine Vibration Signals: Vibration signals are
obtained by acceleration transducers which are on the gear-
box surface. Each transducer has different sensitivity and
represents a different component of the gearbox. The multi-
channel vibration signals are collected and analysed in the
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TABLE I
FUNDAMENTAL GEAR FREQUENCIES
Gear Element # Teeth  Speed GMF
PS Planet Carrier fa
PS Ring Gear A Fixed
Zr
PS Planeth C.vear Zp fa z, FaZn
PS Sun Pinion g o= fa(l— Zy
LS Gear Z s Ja Zs Zio f
IS Pinion Zip fi= Z f i
IS Gear Wheel Zig T Zpt® Znfi
HS Pinion Zh fh = Z: fZ

frequency/order domain. The gear mesh frequencies are com-
puted according to Table 1.

B. Angular Re-sampling

The rotational speed of the wind turbine rotor is determined
by the torque controller in response to the wind speed and
therefore is not constant. In variable-speed rotating machinery,
vibration signals are non-stationary due to speed alteration.
The frequencies of the vibrations though, are proportional to
the rotational speed and the constants of proportionality are the
orders. By re-sampling the non-stationary vibration signals, it
is possible to reconstruct cyclo-stationary vibration signals in
the angular domain, to avoid the mismatch between angle and
time information.

The data is recorded by the tachometer and constant time
increments. Each pulse of the tachometer signal represents a
once-per-shaft-revolution event, so that is used to measure the
shaft speed and is the reference for measuring the vibration
phase angle. The signal is then up-sampled and low pass
filtered. The re-sampled signal is interpolated linearly into
a uniform phase domain grid. Then, the Short-Time Fourier
Transform of the interpolated signal is computed.

C. Fault Detection

When a gear has a local defect, such as a fatigue crack, the
stiffness of the neighboring teeth is affected and this produces
changes in the vibration signal. These changes are defined
by amplitude and frequency modulation. The modulated gear
meshing vibration is given by Eq. (1) [11].

M
y(t) = Z X (14-apm (t)) cos(2rmZ fst+¢m+ Bm(t)) (1)
m=0

Where Z is the number of teeth on the gear, f is the shaft
rotational frequency and therefore Z f is the mesh frequency,
am(t) is the amplitude modulation function, b,,(¢) is the
frequency modulation function, ¢,, is the initial phase of
amplitude modulation and m is the integer.

As the modulation is periodic with the gear shaft rotation
frequency fs, these functions may be represented by discrete
Fourier series, as in Eq. (2, 3).

N
am(t) = Z A cos(2mnfst + amn) 2)

n=0
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N
b (t) = Z By cos(2mnfst + Bmn) 3)
n=0
Note that the modulation functions may differ with m.

In the frequency domain, the Fourier transform Y (f) will
comprise the fundamental and harmonics of the meshing
frequency surrounded by modulation sidebands. Multiple fre-
quencies in the modulation cause multiple sidebands to appear
in the spectrum. These sidebands occur at frequencies of
Z fs £ kfs where k is an integer of 1 or higher.

The signal analysis is performed through the MATLAB en-
vironment. Spectral line analysis is used to diagnose the health
state of the vibration signals. After the application of order
tracking, the spectrum has clear distinct order components
which allows for an automatic procedure of algorithmic order
peak detection. The diagnostic features used to analyse the
health state of the vibration signals computed on the second
harmonic of the gear mesh are the following:

o Sideband Energy Ratio (SER)

o Sideband Power Factor (SBPF)

o Sideband Average Power (SAP)

o Center Frequency and Sideband Kurtosis (KUR)

« Amplitude Ration (AR)

The SER algorithm sums the amplitudes of the first six
sideband peaks on each side of the center mesh frequency
Z?:w Asp,; and divides by the amplitude of the center mesh
frequency A, as in Eq. (4).

Yo g Asp.i
Arp

For a healthy gear mesh the sidebands have a small am-
plitude compared to the center mesh frequency. As damage
develops on a gear tooth, the sideband rise in amplitude which
results in a larger SER value.

The SBPF algorithm sums the amplitudes of the center mesh
frequency and the five sidebands on each side of the center
mesh frequency, as in Eq. (5).

SER = 4

+5
SBPF = Ap + Y A(SB;) )
-5

The SAP algorithm calculates the total power of the first
six sidebands rising around the center mesh frequency. The
power is normalised with the length of the data segment.
Y 4GP ©

N

Where N is the length of the narrowband data segment and
A is the Amplitude of the signal.

Kurtosis is a measure of how outlier-prone a distribution
is. Assuming that the part of the spectrum that includes the
center mesh frequency and a frequency interval of up to six
multiples of the shaft rotational speed represents a distribution,
then the kurtosis is calculated. If the kurtosis has a high
value it means that the distribution is quite sharp and most

SAP =
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values are concentrated in the center frequency. In case of a
fault development, sidebands have increased amplitude in a
spectrum, which means that the values are more distributed
towards the tails, so the kurtosis is lower.

LN A — A

~ - —
(% Xim1(A() — 4)2)
The amplitude ratio ensures that the center mesh frequency
amplitude is higher than the maximum amplitude of the
sideband, as shown in Eq.(8).

MaX(ASB1 5 A5371 )

AR ®)

If the sideband amplitude is higher than the center fre-
quency, therefore AR < 1, it denotes a high severity level
of fault.

D. Classification Training

Based on the features mentioned in the previous paragraph,
a classification model is trained with the aim of fault recog-
nition. It should be taken into account that the vibration
signal from gears is affected greatly by the load. In order to
distinguish such variations from changes in load, the reference
torque is calculated based on the produced electrical power
and generator. The extracted 5 vibration features along with
the torque can be used to train the classification model.

However, as explained in [12], the number of available train-
ing samples should exceed the number of features, because
the complexity of a model cannot exceed the complexity of
the training dataset. Also often, the derived features are not
linearly uncorrelated. In such cases, dimensionality reduction
techniques, such as Principal Component Analysis (PCA) are
applied [13].

Once a number of principal components are derived through
PCA, these are used as inputs a classifier model that is
expected to be able to distinguish between three classes of
data: healthy, incipient fault and developed fault. For that
purpose, a multi-class SVM is used. The exact mathematical
formulation of SVM can be elaborated in [14]. The reason why
SVM is preferred in this paper compared to other learning
algorithms is due to its effectiveness when training small
datasets [15].

III. CASE STUDY
A. Gearbox Considered in this Study

The wind turbine considered in this study is rated at between
1.5 and 3 MW. The vibration data acquisition system consists
of eleven accelerometers and a tachometer on the high speed
shaft. The generator speed, the wind speed and the power
produced by the turbine are also recorded. The acquisition time
of the signal is between 10 and 11s and the sampling frequency
is over 25kHz. Ranges are provided for the rated power,
sampling period and sampling frequency for confidentiality
reasons
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The type of failure examined is a gear tooth failure. This
failure occurs on the pinion tooth of the intermediate stage of
the gearbox.

B. Analysis of the Results

Data is collected for a wind turbine at various time steps
prior to failure. The oldest dataset dates back to 2.5 years prior
to failure and according to the maintenance reports the gearbox
at this time is in a healthy state. The diagnosis framework is
shown in Figure 2.

{Calcula(e GMF given mean} {Callec« desired vibration } [ Determine relationship }
d

generator speed ata and tachometer pulse between sensors and
examined gears

Develop order
spectrum analysis

Determine amplitude of
GMF and sidebands
Calculate health
metrics
Train classification

model

Fig. 2. Vibration Data Preprocessing and Diagnosis Procedure

IV. RESULTS
A. Case Study Results

The shaft speed variation for a given date prior to failure
along with the tachometer pulse is shown in Figure 3. As
depicted, the speed has a 5% variation during the 10.2s and
therefore order tracking is applied as explained in Section II-B.

The vibration signatures form the sensor mounted on the
intermediate speed shaft for similar loading conditions (Ref.
Torque=0.8) is shown in Figure 4. The order is with respect
to the high speed shaft, where the tachometer is mounted. The
rising of sidebands around the second center mesh frequency
(order 8.6) becomes more prominent in time steps closer to
failure, as expected.

The health indicators as a function of torque are shown in
Figure 5. The data is classified according to the time before
failure that the signal was collected. Exponential fitted lines
are also plotted for each time classification.
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Fig. 3. Tachometer Pulse and RPM Signal
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Fig. 5. Health Indicators as a Function of Torque

The SBPF and the SAP tends to increase with loading.
Considering the healthy population, the values given from both
algorithms are lower compared to the faulty population and in
the case of the sideband energy they are almost zero. The
SER algorithm also provides a promising indication of the
fault, giving consistently higher values for faulty population
compared to healthy, as expected based on the rising of
sidebands.

The kurtosis provides an unclear diagnosis algorithm at low
power levels, but as the power increases, the peakedness of the
signal of the healthy population -and therefore the kurtosis-
seems to increase considerably. On the other hand, the kurtosis
of the faulty signal remains at lower levels as expected.

A 3-class classification model is trained based on the col-
lection time of the signal relative to its failure. The classified
data can be considered as ‘healthy’ for up to 1.5 years
prior to failure, and according to the vibration spectra as
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‘incipient fault’” for up to 6 months prior to failure and as
‘developed fault’ for the last 2 months prior to failure. A
5-fold cross validation method was used and the confusion
matrix is shown in Figure 6. All fully developed fault data are
classified correctly, which is the most crucial things in terms
of maintenance, as a missed catastrophic failure can lead to
large revenue loss and downtime. Regarding the incipient fault
data, 2 out of 8 are misclassified; one as faulty and one as
healthy. The first will lead to potentially earlier maintenance
than scheduled and the second will lead to a missed detection
which can however potentially be detected in later months.
The misclassified healthy data can also lead to unscheduled
maintenance.

Although the total accuracy of the classifier at 89.3% is
fairly satisfactory, it should be noted that a larger dataset is
needed in order to build a more robust model.

Confusion Matrix

developed
fault

incipient
fault

Predicted Class

healthy

developed incipient healthy

fault fault
True Class

Fig. 6. Confusion Matrix of Classification Model

B. Validation of Vibration Analysis

This failure occurs on the pinion tooth of the intermediate
stage of the gearbox. The tooth issue has been recorded as gear
tooth tip and flank fracture, as shown in Figure 7. Root cause
analysis of this gear tooth issue has not yet been completed
by the OEM and is out with the scope of this paper.

Fig. 7. Broken Pinion on Intermediate Shaft
V. CONCLUSIONS

This research showed that the developed framework for
diagnosis of a gear fracture failure in a wind turbine gearbox
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is quite effective, as demonstrated through a case study in
real wind turbine data. For this, a healthy baseline of the
gearbox is needed. The diagnosis of the gear state and the
prognosis of time towards failure can be performed based on
classification models. This methodology can potentially detect
incipient faults almost 12 months prior to failure, which gives
plenty of time to schedule maintenance.

In conclusion, future research steps include further devel-
opment of the methodology, including broadband analysis
health features, and development of threshold models. More
case studies on the same type of failure mode need to be
performed in order to develop a robust diagnostic model. Case
studies in different types of gearboxes need to be implemented
and the heath features extracted will be used along with
artificial intelligence techniques to predict failure of wind
turbine components.
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