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Abstract—In this paper we present our end-to-end model of
the imaging pipeline in the Square Kilometre Array. Our Sky
Generator models the signals that are received by the Central
Signal Processor (CSP), our CSP Correlator model then processes
those signals to generate visibilities to pass to the Science
Data Processor (SDP). Our SDP Imaging model then grids the
visibilities and inverse Fourier transforms them to produce a
dirty image of the sky. Our modelling allows us to investigate
the error that is introduced due to reduced numerical precision,
and we then propose techniques to mitigate this error, and thus
reduce the required amount of computational hardware.

Index Terms—Radio astronomy, Square Kilometre Array,
numerical precision, signal processing, modelling

I. INTRODUCTION

Since the first successful measurements of the diameter
of the star Betelgeuse in 1921 by Michelson and Pease
[1], the technology of interferometers has made enormous
advancements and extraordinarily ambitious projects have
been commissioned, with more in the pipeline. Examples
of recently commissioned interferometers are the Very Large
Telescope Interferometer (VLTI) [2] for optical astronomy, and
the Atacama Large (sub-)Millimetre Array (ALMA) [3] for
radio astronomy.

Interferometers are more widely used in the radio spectrum
than at other wavelengths, mostly because common electronics
can more easily handle their lower frequencies. Since the
discovery of cosmic radio emission, radio astronomical in-
terferometers have been built to observe it from decametre to
micrometre wavelengths, and range in size from a few metres
to hundreds of thousands of kilometres with space telescopes
HALCA [4] and RadioAstron [5]. However, due to the sparse
distribution of the receivers, the reconstruction of the observed
part of the celestial sphere is non-trivial and can only be really
approximated through signal processing.

The Square Kilometre Array (SKA) [6] is easily the most
ambitious radio interferometric project currently under way
and will observe metre-to-centimetre wavelengths at unprece-
dented sensitivity. However, even in its first phase, this sen-
sitivity comes with the cost of a large number of array
elements (512 receiver stations), as well as narrow spectral

channels (226 Hz), a large bandwidth (2.5 GHz) and short
integration time (0.25 s). All of these parameters are part
of the science requirements of the SKA and equate to a
tremendous computational cost. The overall operations per
second necessary to meet the SKA requirements is estimated
well above the TOP500 in terms of computing alone, and much
worse when the data flow is considered, as all the antennas will
produce a combined raw data flow of approximately 159 TB/s.

Processing in the SKA will be done in the Central Signal
Processor (CSP) and the Science Data Processor (SDP). The
SDP will perform the final stages of image processing, which
has traditionally been done in double-precision arithmetic in
radio astronomy. However, due to the scope of the SKA, using
double-precision would add a significant cost. Indeed, it has
been estimated that using single-precision in the SDP would
save tens of millions of euro in computing hardware.

In this work, we present our modelling work that aims to
prove that single-precision will be sufficient for the gridding
and FFT operations in the SDP that are the most compute-
intensive parts of the radio astronomy imaging pipeline.

II. RADIO ASTRONOMY IMAGING

A radio interferometer is made up of an array of N ≥ 2
antennas. The maximum angular resolution of a single dish
with a diameter D observing a signal of a wavelength λ is
determined by its diffraction limit and is approximately λ

D .
On the other hand, the angular resolution of the interferometer
is limited by the distance between the furthest two antennas
in the array Bmax in the same way, that is λ

Bmax
. Achieving

sub-arcsecond resolution in single-dish antennas requires large
diameters that are prohibitive (e.g., a primary reflector larger
than 2 km for λ = 1 cm observation). For interferometers,
achieving sub-arcsecond resolution is just a matter of having
antennas as far away as possible from each other.

The basic measurement device (the Michelson interfer-
ometer) is composed of just two elements. Each possible
two-element combination of antennas forms a two-element
measuring device. During an observation, each antenna tracks
a position on the celestial sphere normally within the field
of view of the observation. Each antenna receives the signal
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as time-series voltages, which are then synchronised in a
correlator, cross-multiplied, and accumulated to improve the
signal-to-noise ratio, as the signal of interest is generally
much lower than the ambient noise. These accumulated values
are called visibilities. Each visibility is an algebraic complex
function and a measurement of the intensity distribution of
the sky as seen by the element array. The N(N − 1)/2
visibility readings are done simultaneously by the whole N -
element antenna array and each reading differs in the vectorial
geometrical set-up of the antennas and the radio sources.
The geometrical set-up is described by the baseline which is
the vector distance between the two antennas. Earth rotation
changes the directions of the baseline (assuming a frame of
reference stationary with the celestial sphere), and this is
taken advantage of by taking subsequent visibility readings. As
shown in [7], there is a Fourier relationship between visibility
as a function of baseline vector and the intensity distribution,
i.e., the image of the sky.

Many variables in interferometry are expressed against a
reference direction known as the phase reference centre or
phase centre. The phase centre is fixed to the sky and it is
common practice that it is set to point in the same direction
as the delay centre. The general coordinate system used in
interferometry is the (u, v, w) coordinate system. It is a right-
handed Cartesian system where axes U and V are on a plane
normal to the phase centre and the W-axis in the direction
of the phase centre. The U-axis is in the East-West direction
while the V-axis is in the North-South direction. One of the
main uses of the coordinate system is to measure the baseline
against the phase centre. The baseline components expressed
over the UVW-axes are defined by (u, v, w). The components
are normally given in units of number of wavelengths, λ.
The measurement equation of the interferometer defines the
relationship between the interferometer-measured quantities
V (u, v, w) and the intensity distribution of the sky I(l,m)
multiplied by the antenna response A(l,m). It is defined in
the most general case as (1) (see the top of this page).

The visibilities obtained from the correlator are samples of
the measurement equation for the given (u, v, w) coordinate of
the baseline vector. In order to obtain the intensity distribution
of the sky, it is necessary to Fourier invert (1). Whilst possible
in the generalised form given above, it is conceptually difficult
and computationally expensive. If the visibility equation (1)
can be reduced to the form of a two-dimensional Fourier
transform (necessitating the removal of the w term), the
inversion can be carried out using a Fast Fourier Transform
FFT [8], which is much more computationally tractable. For
most radio interferometry, this w term can be ignored as it is
negligible if the field of view is small. However, in the case
of SKA, the field of view is several degrees wide, so some
strategies such as w-projection [9], w-stacking [10] and/or w-

snapshot [11] are used, but are outside of the scope of this
work. Once the w term is corrected, (1) can be reduced to

V (u, v, w) =

∫ ∞
−∞

∫ ∞
−∞

A(l,m)I(l,m)e−2jπ(ul+vm)dldm,

(2)

which leads to the inverse Fourier function
1

A0
A(l,m)I(l,m) =

∫ ∞
−∞

∫ ∞
−∞

V (u, v)e2jπ(ul+vm)dldm.

(3)

The FFT is the most efficient algorithm to solve this inversion,
but requires a regularly-spaced sampled function. However, the
value of the visibilities are non-regularly sampled continuous
(u, v) coordinates. To use the FFT, the values of the visibilities
need to be evaluated on a regularly-spaced grid by a so-called
gridding kernel. Several gridding kernels exist but the most
commonly used is the prolate spheroidal function [12].

III. MODELS OF THE SIGNAL PROCESSING CHAIN

We developed a novel suite of models that comprise a
full end-to-end model that takes a parametrised description
of an area of sky with semi-realistic stellar sources, and after
simulating an observation produces a corresponding intensity
map I(l,m). These are the Sky Generator Model (SGM),
CSP Correlator Model (CCM), and the SDP Imaging Model
(SIM), depicted in Figs. 1 and 2. The SGM and CCM were
largely implemented in Simulink for its natural ability to
succinctly model digital signal processing systems, while SIM
was written in Matlab. We consider a single polarisation and a
single coarse channel, as X and Y polarisations and adjacent
frequency channels are considered to be essentially orthogonal.
While parts of the complete radio astronomy signal processing
pipeline have been modelled by others, we believe ours to be
the first operational end-to-end model in existence.

A. Sky Generator Model

The SGM models the locations of 40 SKA Low antennas
(a substantial subset of the full array of ∼ 500) and their
geometrical relationship with synthetic astronomical sources.
It generates the astronomical signals that would be received
by the SKA Low array with its particular antenna loci, source
direction (declination and right ascension) and intensities, and
time of observation. The model also generates the appropriate
time-varying geometric time delays that are central to the
interferometer’s operation and used by the CCM delay cor-
rection modules to synchronise the signals received by each
antenna. This capability allows us to verify the overall model
as it provides sufficiently realistic signals for processing by the
CCM and SIM to reconstruct the source image. We considered
using real data from an existing, different, radio telescope
array, but determined it was important to model the layout
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Fig. 1. The CSP correlator model.

of the SKA as it will be constructed and to be able to perform
simulations with arbitrary source configurations.

An important function of SGM is to produce signals that
are delayed a fraction of the sample time. These are known
as sub-sample, or fractional, delays and the generation, and
subsequent correction by the observatory is key to the correct
operation of the telescope. In the elementary case of a pure
sinusoid, this may be achieved analytically, however SGM’s
synthesis mechanism follows [13] which proposed approxi-
mating a band-limited noisy signal with a chorus of sine waves
with closely spaced random frequencies and phases. A simple
Gaussian random number generator is not used as one must
be able to accurately compute fractional delays.

B. CSP Correlator Model

The CCM executes the CSP functions in Fig. 1, trans-
forming unprocessed and incoherent radio wave samples into
visibilities. This section only describes the imaging pipeline
of the model, and does not include elements such as the radio
frequency identification and mitigation components that do not
affect the precision of the model.
• Doppler Shift Correction As the Earth rotates, Doppler

shifts are introduced, modulating the frequency at each
channel by a small, yet non-trivial, amount. The amount
of Doppler shift is different for each antenna; some will
be moving toward the source while others are moving
away as the source passes through zenith.
The original incoming signal si is Doppler-corrected
to ŝi, by applying a complex time-varying phase-shift
particular to each antenna:

ŝi = si e
−jωc di(t) (4)

where ωc is the angular frequency of the centre of the
coarse channel, and di(t) is the time-varying delay for
signal i.

• Coarse Delay Correction For the Low CSP stage, the
incoming data are sampled at 1.08µs (926 kHz). The
Coarse Delay Correction module aligns all antenna feeds
to within ±0.5 samples referenced to the centre of the
array. This is achieved by applying the integer component
of the delay, z−n, appropriate to each antenna signal. In
practice these delays are provided by the telescope man-
ager given that they are known a priori for a particular
observation, although in this model the Sky Generator
provides these parameters.

• Correlator/Fine Filterbank The filterbank is a chan-
neliser, performing frequency analysis with a polyphase
filterbank architecture as described in [14] and [15]. The

fine filterbank performs the second and final step of
frequency analysis, refining each of the 384 × 926 kHz
coarse channels into 4,096 × 226 Hz fine channels.

• Fine Delay Correction The fine delay correction re-
moves the potential signal misalignment of up to ±0.5
sample after the coarse delay is removed. This delay
equates to c× Ts

2 = 162 m, many times the antenna dish
diameter. This delay is removed by applying a complex
phase-shift in the Fourier domain to the channelised data

ŝi = si e
−j di(t+∆t) (5)

• Correlator.
The cross-correlation of two discrete functions x and y
is

xn ? yn =
∞∑

m=−∞
x∗m · ym+n (6)

and from the Correlation Theorem we know that:

F{x ? y} = F{x}∗ · F{y} (7)

The Filterbank performs the Fourier analysis, and the
Correlator performs the complex element-wise vector
multiplication F{x}∗ · F{y} for all baselines, all pairs
of antennas, all coarse channels, and all fine channels,
emitting complex visibilities for each baseline. These
visibilities are a measure of the common astronomical
signal detected by each baseline.

• Accumulator. The Accumulator integrates visibilities up
to the dump time, 0.25 s. This is a straightforward yet
crucial step, as the astronomical signals are far below the
noise and thus must be accumulated for a relatively long
time to increase the signal-to-noise ratio; approximately
57 times per dump. Accumulated visibilities are sent to
the SDP.

C. SDP Imaging Model
Our SDP Imaging Model (SIM) was written in Matlab, and

is based on ASKAPsoft [16], which is the C++ software that
the Australian Square Kilometre Array Pathfinder [17] runs.
The incoming visibilities are gridded onto a regular grid using
prolate spheroidal functions, and then converted to the image
domain using the IFFT, and thus implementing (3). This ‘dirty
image’ is then deconvolved to produce a cleaned, and then
restored image. In this work we only consider the dirty image.

Although we have flexibility in the precision used in each
stage of our model, we also have a mode that follows the
precision used in ASKAPsoft, allowing us to reproduce the
exact output of ASKAPsoft, giving us confidence in the
accuracy of our Matlab implementation.
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TABLE I
PRECISION COMBINATIONS STUDIED

legend label P

8-bit QUDD
32-bit UQDD

gridding UUSD
IFFT UUDS

D. Full System Model

Our full system model is shown in Fig. 2. The current SKA
design specifies that the input to the CCM will be quantised
to 8-bit integers with a standard deviation of 12, and that the
output of the CCM will be quantised to 32 bits.

The precision options in Fig. 2 allow us to refer to a
combination of precision options as a four-letter code. For
example the highest-precision case is UUDD, which means:

U no quantisation between the SGM and CCM
U no quantisation between the CCM and Gridder
D the Gridder runs at double-precision
D the IFFT runs at double-precision,

and the lowest-precision case is QQSS, which means:

Q 8-bit quantisation between the SGM and CCM
Q 32-bit quantisation between the CCM and Gridder
S the Gridder runs at single-precision
S the IFFT runs at single-precision.

This allows us to study the isolated precision effects of
different blocks in the dirty images produced by various
precision combinations. Table I shows the combinations and
the labels we use to refer to them.

Note that for this work, the SGM operates in double
precision (as it is approximating a natural phenomenon). The
CCM also operates in double precision, although parallel
investigations have developed CCM model variants that also
run at varying precision levels.

IV. RESULTS AND DISCUSSION

We used our Sky Generator Model to generate the signals
that would be received by 40 receivers over a five minute
observation period. The receiver locations were chosen as a
subset of the 512 planned for SKA Low. These (possibly quan-
tised) sky signals were then processed by the CSP Correlator
Model as 780 baselines, resulting in 250,000 visibilities. These
were possibly further quantised, before being processed by the
SDP Imaging Model at various precisions to produce dirty
images.
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Fig. 3. Isolated precision errors for 40 receivers, and a 2562 grid.

We calculated the error due to reduced precision in the
following manner. Let XP be the dirty image obtained with
precision combination P , then we measure the normalised
root-mean-square error (NRMSE) between the precision com-
bination P and a reference Pref as

E(P, Pref) =
||XP −XPref ||2
||XPref ||2

(8)

where || · ||2 denotes the `2 norm. See Table I for the precision
combinations used. In this work, Pref is always the most
precise computation, UUDD.

Fig. 3 presents the isolated errors due to reduced precision,
plotted over a five minute interval. All the errors reduce or
remain flat except for that due to gridding. Indeed, the gridding
is the main source of error, and approaches 1×10−4. The error
due to the 8-bit quantisation is just over 1× 10−6, while the
IFFT error is less than 1× 10−7. The error due to the 32-bit
quantisation is orders of magnitude down, well below 1×10−9,
and will be ignored in the rest of the results.

A common source of error in single-precision processing is
that a very small number is added to a very large number, re-
sulting in no change to the large number due to the limitations
of single-precision representation. We hypothesised that this
was the cause of the high gridding error, as many visibilities
could be added up together on the same grid point. To test
this hypothesis, we redid the results in Fig. 3 on larger grids.
These results are shown in Fig. 4, where it is clear that the
increasing grid size reduces the gridding error significantly. It
is intuitively satisfying that the 8-bit quantisation and the IFFT
errors are unaffected by the grid size. This is also the case for
the 32-bit quantisation, which remains below 1× 10−9 for all
grid sizes, but for clarity is not shown.
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During the course of this work, there was a change to
the SKA requirement governing the integration time in the
CSP, from 0.90 seconds down to 0.25 seconds. The effect
of this requirement change is that the visibilities arrive at
the gridder about 3.6 times faster. We used our model to
investigate the effect of this change on the error due to reduced
precision. The results are shown in Fig. 5. It is clear that
the decrease in integration time from 0.90 s to 0.25 s results
in an order-of-magnitude increase in the gridding error, due
to more visibilities being added to a grid point. The IFFT
and 8-bit quantisation errors are unaffected by the decrease in
integration time, and for clarity are not shown here.

In order to mitigate this increase in gridding error, we
implemented a simple extension to our gridder, where we pre-
summed three 0.25 s visibilities before they were gridded. This
result is shown in Fig. 5 as the 0.75 s curves. It is clear that
this simple addition decreases the error significantly, paving
the way for more sophisticated schemes such as baseline-
dependent averaging (BDA) [18]. BDA involves averaging the
visibilities so that shorter baselines have longer integration
times, and is usually used to reduce the time spent on the
gridding process, but the results here suggest that it could also
be used to decrease the single-precision error significantly.

In the SKA, the integration time in the output of the CCM
is fixed and cannot be varied according to baseline length.
However, as shown above we can simply accumulate them

further at the input to the SDP before they are gridded, and
this could easily be done according to baseline length.

V. CONCLUSION

In this paper we have presented our precision modelling
work of the Imaging Pipeline in the SKA, along with some
initial results. These initial results are very encouraging, and
indicate that the IFFT may be performed in single-precision
as the error in doing so is less than that due to the 8-
bit quantisation. Single-precision gridding introduces a more
significant error, but our results strongly suggest that this error
may be reduced by performing averaging of the visibilities in
the SDP before gridding them.
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