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Abstract—In hearing aids (HAs), the acoustic coupling between
the microphone and the receiver results in the system becoming
unstable under certain conditions and causes artifacts commonly
referred to as whistling or howling. The least mean square (LMS)
class of algorithms is commonly used to mitigate this by providing
adaptive feedback cancellation (AFC). The speech quality after
AFC and the amount of added stable gain (ASG) with AFC are
used to assess these algorithms. In this paper, we introduce a
variant of the LMS that promotes sparsity in estimating the
acoustic feedback path. By using the lp norm as a diversity
measure, the approach does not enforce, but takes advantage
of sparsity when it exists. The performance in terms of speech
quality, misalignment, and ASG of the proposed algorithm is
compared with other proportionate-type LMS algorithms which
also leverage sparsity in the feedback path. We demonstrate
faster convergence compared with those algorithms, quality
improvement of about 0.25 (on a 0–1 objective scale of the
hearing-aid speech quality index (HASQI)), and about 5 dB ASG
improvement compared with the normalized LMS (NLMS).

Index Terms—Adaptive feedback cancellation, LMS, propor-
tionate adaptation, sparsity, hearing aids

I. INTRODUCTION

In hearing aids (HAs), acoustic feedback is a well-known
problem that causes howling and whistling effects that are
annoying to the users. Under certain conditions, the receiver
signal feeding back to the microphone will make the system
become unstable. This not only degrades the audio quality but
also limits the amount of amplification that can be provided by
the HA. To overcome this many adaptive feedback cancellation
(AFC) techniques have been proposed for modern HAs [1].

In AFC, an adaptive filter is continuously adjusting to
approximate the impulse response (IR) of the acoustic feed-
back path. In the adaptation stage, least mean square (LMS)
algorithms [2] are the most widely used techniques due to
computational simplicity and their effectiveness. However, the
estimate given by the LMS is inevitably biased due to the
correlation between the incoming signal and the feedback
signal [3]. Several methods have been proposed to address
this bias issue such as the filtered-X LMS (FXLMS) [4], [5],
the prediction-error-method (PEM) based AFC [6], insertion
of probe noise [7], phase modulation [8], PEM with frequency
shifting [9], the dual-microphone approach [10], etc.

Assuming that the bias problem can be well handled by the
above techniques, a question of interest is: Can we further
improve the convergence behavior of the AFC from other

aspects? Observing that typical feedback path IRs are (quasi)
sparse as shown in Fig. 2, one might think of taking advantage
of this sparseness for improvements. This can actually be
carried out by the concept of proportionate adaptation that
originated from the proportionate normalized LMS (PNLMS)
algorithm [11]. The main idea behind proportionate adaptation
is to update each filter coefficient independently of the others
by assigning to the corresponding step size a weight in
proportion to the magnitude of the estimated coefficient. In
other words, it redistributes the adaptation gains among all
coefficients and emphasizes the large ones in order to speed
up their convergence.

However, the original PNLMS has the problem that it is
more beneficial for systems with very sparse structures. For
AFC application where the feedback path IRs are usually
quasi-sparse, other proportionate-type LMS algorithms can be
more suitable. For example, the improved PNLMS (IPNLMS)
[12] and the IPNLMS-l0 [13] have the flexibility for identify-
ing systems of different levels of sparsity. Attempts have been
made to incorporate these proportionate algorithms into AFC
[14]–[16] and improvements have been reported. However,
these proportionate algorithms were not formally derived by
minimizing any underlying objective functions so that their
usage can be further optimized. Moreover, the parameters
within these algorithms do not have direct connections to the
sparsity degree of the underlying system they aim to identify.

In this paper, we propose a new AFC approach that incor-
porates sparsity in the feedback path estimate based on the
pLMS algorithm of [17], [18]. This method, called Sparsity
promoting LMS (SLMS), takes advantage of sparseness in
the feedback path when such sparsity is present while not
enforcing it. By adding the lp norm as a diversity measure to
the objective function of the ordinary LMS, the algorithm is
derived using the affine scaling method [19] in the minimiza-
tion procedure. The benefit of using the lp norm is brought by
its direct connection to the system sparseness which provides
a practical way of parameter selection. Our algorithm has the
advantages of enjoying theoretical support, simpler parameter
optimization, and more straightforward leverage of (quasi)
sparsity in acoustic feedback paths. Simulation results using
feedback paths measured with real HAs show that the SLMS
outperforms other proportionate-type LMS algorithms in terms
of audio quality, misalignment, and added stable gain (ASG).
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II. AFC SYSTEM

Fig 1. shows the typical AFC framework. The AFC filter
W (z) is an FIR filter placed in parallel with the HA processing
G(z) that continuously adjusts its coefficients to emulate the
IR of the feedback path F (z). x(n) is the desired input signal
and d(n) is the actual input to the microphone, which contains
x(n) and the feedback signal y(n) generated by the HA output
s(n) passing through F (z). ŷ(n) is the estimate of y(n) given
by the output of W (z). e(n) = d(n)− ŷ(n) is the feedback-
compensated signal which, ideally, should be identical to x(n).
In practice, however, the AFC is not perfect and therefore
ŷ(n) 6= y(n), resulting in distortion between e(n) and x(n).
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Fig. 1. Block diagram of the AFC framework.

In our system we adopt the PEM based AFC framework [6]
where a time-varying pre-filter A(z) is present and adapted
using linear prediction of e(n) [20]. We also employ a band-
limited filer H(z) from the FXLMS approach to concentrate
on the frequency regions where oscillation is likely to occur
[5]. This filter can also be viewed as a very rough approxima-
tion of the feedback path in the frequency domain [4].

In this framework, the LMS for coefficient adaptation is
carried out in the pre-filtered signal domain, where the pre-
filtered signal uf (n) and ef (n) are used to update the L-tap
AFC filter w(n) = [w0(n), w1(n), ..., wL−1(n)]T as:

w(n+ 1) = w(n) + µ(n)uf (n)ef (n), (1)

where uf (n) = [uf (n), uf (n− 1), ..., uf (n− L+ 1)]T and a
time-varying step size µ(n) is usually employed to improve
the convergence rate:

µ(n) =
µ

Lσ̂2(n) + ε
, (2)

with µ > 0 the step size parameter, ε a small positive constant
to prevent division by zero, and σ̂2(n) = ρσ̂2(n− 1) + (1 −
ρ)(u2f (n) + e2f (n)) the power estimate term with a forgetting
factor 0 < ρ ≤ 1. This is actually the (modified) normalized
LMS (NLMS) [21] and has been widely used in speech
processing especially for AFC in HAs [5], [6], [22].

III. PROPORTIONATE ALGORITHMS FOR AFC
To incorporate the proportionate adaptation idea into the

AFC, the update rule (1) becomes:

w(n+ 1) = w(n) + µ(n)P(n)uf (n)ef (n), (3)

where

P(n) = diag{p0(n), p1(n), ..., pL−1(n)} (4)

is an L-by-L diagonal matrix assigning different weights to
the step sizes for different filter taps. We refer to it as the
”proportionate matrix”.

Applying the PNLMS [11], at the n-th iteration the diagonal
entries of P(n) are computed as:

pl(n) = rl(n)/( 1
L

∑L−1
i=0 ri(n)), (5)

for l = 0, 1, ..., L− 1 where

rl(n) = max{κmax{ζ, |w0(n)|, ..., |wL−1(n)|}, |wl(n)|},
(6)

with positive constants κ and ζ.
When using the IPNLMS [12], we have:

rl(n) = (1− α)
‖w(n)‖1

L
+ (1 + α)|wl(n)|. (7)

Substituting (7) into (5) gives:

pl(n) =
(1− α)

2
+ (1 + α)

|wl(n)|
2
L

∑L−1
i=0 |wi(n)|+ δ

, (8)

where a small constant δ > 0 is added to prevent division
by zero and −1 ≤ α ≤ 1 is a parameter that can be chosen
for different sparsity levels: When α = 1 it behaves like the
PNLMS while for α = −1 it reduces to the NLMS.

When using the IPNLMS-l0 [13], the l0 norm approximation

‖w(n)‖0 = lim
β→∞

L−1∑
i=0

[
1− e−β|wi(n)|

]
≈
L−1∑
i=0

[
1− e−β|wi(n)|

]
(9)

is used to replace the l1 norm in the IPNLMS. This gives:

rl(n) = (1− α)
‖w(n)‖0

L
+ (1 + α)

[
1− e−β|wl(n)|

]
, (10)

which results in:

pl(n) =
(1− α)

2
+ (1 + α)

1− e−β|wl(n)|

2
L

∑L−1
i=0

[
1− e−β|wi(n)|

]
+ δ

,

(11)
with another parameter β that provides control for identifying
systems with different degrees of sparsity.

The PNLMS is more suitable for very sparse systems. The
IPNLMS and IPNLMS-l0 have parameters (α and β) for fitting
different sparsity degrees but without direct connections to the
system sparsity levels. Moreover, the formulations of these
algorithms do not have theoretical foundation.

IV. PROPOSED SPARSITY PROMOTING LMS ALGORITHM

In this section we present the derivation of the proposed
AFC algorithm that promotes sparsity. Let E[·] denote the
expectation operator. In the pre-filtered signal domain of AFC,
the ordinary LMS considers the following mean squared error
(MSE) minimization problem:

min
w

J(w) = E
[
|ef (n)|2

]
= E

[
|df (n)− ŷf (n)|2

]
= E

[
|df (n)− wTuf (n)|2

]
= E

[
|df (n)|2

]
− 2wTb + wTRw,

(12)
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where R , E
[
uf (n)uTf (n)

]
and b , E [uf (n)df (n)].

To enforce sparsity on the solution w, we modify (12) as:

J(w) = E
[
|df (n)|2

]
− 2wTb + wTRw + γ ‖w‖pp , (13)

where the lp norm diversity measure ‖w‖pp =
∑L−1
l=0 |wl|p,

p ∈ (0, 2] is added with a regularization parameter γ > 0 to
promote sparsity in the solution w [17], [18]. From [19], the
gradient of the lp norm term w.r.t. w is given by:

∇w ‖w‖pp = pΠ(w)w, (14)

where Π(w) = diag(|wl|p−2). Applying this to the gradient
of (13) and setting to zero, we obtain the following condition
for the optimal solution wo:

wo = Π−
1
2 (wo)(Π−

1
2 (wo)RΠ−

1
2 (wo) + γ̃ I)−1Π−

1
2 (wo)b,

(15)
where γ̃ , γp

2 and I denotes the identity matrix. This suggests
the following iterative procedure for computing wo:

w(n+ 1) = M(n)(M(n)RM(n) + γ̃ I)−1M(n)b
= M(n)(R(n) + γ̃ I)−1b(n),

(16)

where we have defined:

M(n) , Π−
1
2 (w(n)) = diag(|wl(n)| 2−p

2 ) (17)

and auxiliary variables: R(n) , M(n)RM(n) and b(n) ,
M(n)b.

At the n-th iteration, for w ∈ RL, we define the correspond-
ing affinely scaled variable as [19]:

q(w) , Π
1
2 (w(n))w = M−1(n)w. (18)

With this transformation into the affine scaling domain, we
have at the n-th iteration:

q(n) ≡ q(w(n)) = M−1(n)w(n). (19)

q(n+ 1) ≡ q(w(n+ 1)) = M−1(n)w(n+ 1). (20)

Using (20), the update rule (16) can be equivalent to:

q(n+ 1) = (R(n) + γ̃ I)−1b(n). (21)

Observing that (21) is actually the minimizer of the following
quadratic objective function:

J(q) = E
[
|df (n)− qTM(n)uf (n)|2

]
+ γ̃ ‖q‖22 , (22)

we can derive the steepest descent algorithm as:

q(n+ 1) = q(n)− µ

2
∇qJ(q)

= (1− µγ̃)q(n) + µ(b(n)− R(n)q(n)),
(23)

where µ > 0 is the step size parameter.
Transforming (23) back to the original coefficient domain

using (19) and (20) we obtain:

w(n+ 1) = (1− µγ̃)w(n) + µM2(n)(b− Rw(n)). (24)

Finally, to derive the adaptive algorithm, we replace R
and b in (24) by their corresponding instantaneous values
uf (n)uTf (n) and uf (n)df (n), respectively [2]. This gives:

w(n+ 1) = (1− µγ̃)w(n) + µM2(n)uf (n)ef (n), (25)

where M2(n) = diag(|wl(n)|2−p) from (17). This is actually
the pLMS algorithm proposed in [17]. Note that M2(n) has
a similar role as the proportionate matrix P(n) in (3). In
fact, it indicates that the weight assigned to each step size
is in proportion to |wl(n)|2−p. Based on this and the previous
discussion on proportionate adaptation for AFC, we propose
the following update rule:

w(n+ 1) = w(n) + µ(n)P(n)uf (n)ef (n), (26)

where µ(n) is the normalized step size as (2), P(n) =
diag{p0(n), p1(n), ..., pL−1(n)} as (4) with pl(n) =
rl(n)/( 1

L

∑L−1
i=0 ri(n)), for l = 0, 1, ..., L− 1 as (5), and:

rl(n) = ||wl(n)|+ c|2−p, (27)

where p ∈ (0, 2] and c > 0 is a small positive constant.
Several observations can be made here. First, comparing

(26) to (25), we have set γ to zero as it has negligible effect
as long as we keep it small [18]. In such case, due to the
presence of P(n), the algorithm will still exploit, though not
enforce, the sparsity of the solution if it already exists. We
then refer to it as Sparsity promoting LMS (SLMS). However,
a practical issue arises when γ = 0 for (25): Once any of the
AFC filter taps becomes 0, it will not get updated anymore.
We therefore suggest adding a small constant c > 0 to all the
taps as in (27) before they are used to compute P(n).

The parameter p is much more influential: When p is smaller
(close to or less than 1), the algorithm becomes more sparsity
promoting due to the nature of the lp norm; while when p = 2,
it reduces to the NLMS. This indicates that a sparse system
would benefit more from a smaller p while for a dispersive
system, p close to 2 would be more preferable. From this it
becomes clearer the advantage of incorporating the lp diversity
measure. For the quasi-sparse feedback IRs in AFC, we expect
that the optimal p value would lie between 1 and 2.

V. SIMULATION RESULTS

The above algorithms are evaluated using computer sim-
ulations in MATLAB at a sampling rate of 16 kHz. The
experimental set up was as follows: The HA processing
G(z) = gz−d with g = 20 and d corresponding to a delay of
8 ms. The feedback path IRs were measured using a behind-
the-ear HA with open fitting on a dummy head and truncated
to a length of 263 samples as shown in Fig. 2. The AFC
filter length was L = 100 to cover the significant part of the
IRs. The forgetting factor ρ = 0.985. The step size parameter
µ = 0.005. Small positive constants ε = δ = c = 10−6. The
band-limited filter H(z) = 1 − 1.8z−1 + 0.81z−2 as used in
[4]. The pre-filter A(z) was an FIR filter of order 20 updated
every 10 ms via linear prediction of e(n) [20].

For the purpose of evaluation, the following metrics were
used. First, to measure the distortion between e(n) and x(n),
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Fig. 2. Measured acoustic feedback path IRs of (a) f1: no obstruction, (b)
f2: with a cellphone close to the ear, and (c) f3: with a cellphone right on
the ear.

the hearing-aid speech quality index (HASQI) was used [23].
The HASQI score ranges from 0 to 1, where the higher
the score, the better the quality. For evaluating convergence
performance the normalized misalignment was considered:

Misalignment = 10log10

∫ π
0
|F (ejω)− F̂ (ejω)|2dω∫ π

0
|F (ejω)|2dω , (28)

where F (ejω) and F̂ (ejω) are the frequency responses of the
measured and estimated feedback IRs, respectively. Note that
the estimated feedback response is given by the band-limited
filter and the AFC filter together as F̂ (ejω) = H(ejω)W (ejω).
For estimating the ASG we used [24]:

ASG = 20log10

(
min
ω

1

|F (ejω)− F̂ (ejω)|

)

− 20log10

(
min
ω

1

|F (ejω)|

)
.

(29)

In our first experiment we examine the effect of p in the
SLMS on channels with different sparsity levels. In addition to
the measured feedback path f1 we considered two other arti-
ficial channels as plotted in Fig. 3. The input was a stationary
speech-shaped noise. Fig. 4 shows the convergence behavior
in terms of misalignment. We can see that for the feedback
path case, p = 1.5 outperforms other values. For the sparser
system, a smaller p around 1.2 is more preferable; while p
around 1.8 gives the best performance for the dispersive one.
These results show that the SLMS is exploiting the underlying
system structure in the way we expect. Furthermore, in Fig.
4 (a) we can see that the SLMS (with a good choice of p)
can improve the convergence rate over the NLMS and still
maintains low steady-state error, which is not achievable by
only using a larger step size parameter µ for the NLMS.

In the next experiment, we ran the AFC system with
the SLMS on 25 male and 25 female speech signals from
TIMIT database and measured the corresponding HASQI of
the feedback-compensated signal e(n). Average HASQI scores
over the 50 speech files for different values of p are shown
in Fig. 5. We can see that the optimal p almost lies in the
same range even as the feedback IR differs. This means, for a
given HA device, if we have some rough knowledge about the
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Fig. 3. Artificial IRs of (a) a sparse channel and (b) a dispersive channel.
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Fig. 4. Misalignment comparison of SLMS with different p on (a) the
measured feedback path f1, (b) the sparse channel, and (c) the dispersive
channel with speech-shaped noise input.

sparsity degree of its feedback channel, the SLMS is robust
since p is not very sensitive near the optimal point. From the
results we found p around 1.5 to be a good choice, which also
corresponds to the result we had in Fig. 4 (a).
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Fig. 5. Effect of p on speech quality of SLMS for (a) f1, (b) f2, and (c) f3.

We also compare the SLMS with other proportionate algo-
rithms for the AFC. The parameter settings were − PNLMS:
κ = 0.1 and ζ = 0.01; IPNLMS: α = 0; IPNLMS-l0: α = 0
and β = 150. For the SLMS we used p = 1.5. The NLMS
(which is equivalent to IPNLMS and IPNLMS-l0 with α = 0
and SLMS with p = 2) is also compared. Fig. 6 compares the
tracking performance in terms of misalignment and ASG with
speech-shaped noise input. To model a highly time-varying
feedback back environment, the feedback path was initially f1,
switching to f2 then f3 at the 1/3 and 2/3 of the input sequence,
respectively. We can see that the proportionate algorithms
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basically have faster convergence speed compared to the
NLMS. Among all, the SLMS shows the best convergence
behavior and can provide up to about 5 dB additional ASG
compared to the NLMS.

Finally, for further verification, we ran the algorithms on
the speech dataset and measured the average HASQI under 4
different feedback scenarios as shown in Fig. 7. We see that
the SLMS outperforms all the other ones, especially obvious
under an adverse feedback situation such as the last two cases
(about 0.25 HASQI improvement compared to the NLMS in
the last case).
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Fig. 6. Misalignment and ASG with speech-shaped noise input.
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Fig. 7. Comparison of speech quality for different feedback environments.
The first three cases were fixed environments with f1, f2, and f3. The last
case f123 was the feedback path changing from f1 to f2 then f3 at 1/3 and
2/3 of the input sequence, respectively.

VI. CONCLUSION

In this paper we introduce the SLMS for AFC to exploit
sparsity in estimating the feedback path. This approach extends
the LMS algorithm by incorporating the lp diversity measure
in the objective function. We derive update rules and discuss
guidelines for choosing the system parameters. We present
simulation results with speech-shaped stimulus and speech
segments with real-world feedback paths, including conditions
where the feedback path changes over time. The results show
that for the SLMS (i) choice of p is not very sensitive around
the optimal point; (ii) HASQI improvement of about 0.25
over the NLMS; (iii) ASG improvement by 5 dB compared to
the NLMS; and (iv) better performances compared with other
proportionate-type LMS algorithms.
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