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Abstract—In this paper, we aim at improving the estimation
performance of the direction of arrival (DOA) in a colocated
MIMO radar through power allocation under the sparsity
constraints. Specifically, by considering the sparse recovery
techniques, we try to minimize the coherence of associated sensing
matrix by optimally distributing the power among transmit
antennas. To determine the optimal power distribution, we
reformulate the coherence minimization problem and derive a
convex optimization constrained by the total power budget. This
helps us to efficiently evaluate and simulate the optimal power
distribution policy. Simulation results confirm superiority of the
proposed method compared to the existing techniques.

I. INTRODUCTION

In a MIMO radar system, due to the existence of several
transmit-receive antennas and the extent of the target space
(e.g. the range-Doppler domain or the azimuth domain in case
of DOA estimation), the amount of data and the search area
are both huge. However, the number of existing targets is
relatively small, which promote the use of sparse recovery
methods. Moreover, the sparse nature of the targets allow for
their detection and estimation even with much less received
data (for example with fewer transmit/receive antennas). The
application of sparse modeling to MIMO radars has been
addressed both for colocated MIMO radars [1] (e.g. in [2]-
[S]) and widely separated MIMO radars [6] (e.g. in [7]-
[9]). In both cases, by assuming the targets to be sparsely
spread over the target space, sparse recovery methods studied
in the field of compressed sensing (CS) are used to detect
and estimate the targets. In this paper, we consider the DOA
estimation problem in a colocated MIMO (CL-MIMO) radar
under sparse modeling. More precisely, we intend to improve
the performance of the sparse recovery process (and thereby
improving the performance of DOA estimation) by means of
power allocation.

The study of power allocation problem in MIMO radars
has been traditionally focused on minimizing the Cramer-Rao
lower bound (CRLB) on the estimation of targets [10]-[12].
Due to the complexity of evaluating the CRLB under sparse
models, the power allocation problem is treated differently in
this context. Examples of such studies include [8], [13]. In [8]
widely separated MIMO radars are considered, and an adaptive
power allocation scheme is proposed. In this method, after
obtaining an estimate of the targets, the powers of the next set
of transmitting pulses are determined so as to maximize the
minimum target return. In [13], the power allocation problem
is addressed for both colocated and widely separated cases.
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In this work, for the colocated case the configuration of [3] is
adopted, where the transmit (TX) and receive (RX) antennas of
the MIMO radar are considered as the nodes of a small scale
network that are randomly located in a disk of a small radius.
Target space in [13] is assumed to be the azimuth space and
the DOA estimation problem is considered. Power allocation
in [13] is carried out in a way to improve the sparse recovery
performance by making the gram matrix of the sensing matrix
(i. e. W W where W is the sensing matrix) as close as possible
to an identity matrix. This will reduce the coherence of the
sensing matrix which can improve the recovery performance.
Reducing the coherence of the sensing matrix has been also
studied in a few other works in the context of compressive
sensing based radars such as in [14], [15], to improve the
sparse recovery process. Similiar to [13] the coherence is not
minimized directly in these works.

In this paper, to conduct the power allocation, we adopt a
direct approach to reduce the coherence of the sensing matrix.
That is, considering the same model as in [13], we choose the
coherence of the sensing matrix itself as the cost function to
minimize and derive a convex optimization problem to obtain
optimal powers.

The rest of the paper is organized as follows. A brief
review on CS formulation and conditions for recovery will
be given in section II. Then, the radar Signal model and CS
formulation for received signals will be discussed in section
III. The proposed power allocation scheme will be presented
in section IV and simulation results will be provided in section
V. Finally, we conclude the paper in section VI.

II. COMPRESSED SENSING AND SPARSE RECOVERY

The theory of compressed sensing states that a K-sparse
vector Xy x1 (with at most K nonzero elements where k < N)
can be recovered from M noisy linear measurements y,;,.; =
W¥x + n through solving the /; minimization problem:

min x|y st [[@x— y|I? < € (1)
if 1) the sensing matrix ¥,y holds the following restricted

isometry property (RIP) [16] for any 2K -sparse vectors with
a restricted isometry constant (RIC) dx < V2 —1:

(1= 0r)lIxl3 < x5 < (1+ dx) 1x13 2)
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and 2) the noise process is bounded by ||n||2 < €. Then, the
reconstruction error for the solution X to (1) will be bounded

by:
[x —x[|2 < Ce 3)

where C' is a small constant. The problem with RIP is that its
testing for a given matrix is an NP-hard problem which makes
its use intractable when M is large. A sufficient condition on
RIP can be provided by coherence of the matrix which is easy
to tract. The coherence of a matrix ¥ with u;s as its columns
is computed by:
H
(@) = mae 0]
E iyl

The advantage of the coherence over RIP is its capability
to be formulated in a straightforward manner and computed
in polynomial time. RIC is conservatively bounded by dx <
(K — 1)u(®). So, it is important to keep p(¥) as small as
possible. Here we seek minimizing the coherence using power
allocation.

“4)

III. SIGNAL MODEL

Let us consider MIMO radar with the same configuration as
in [3] and [13]. It is assumed in this configuration that M TX
antennas and /N RX antennas of the radar are randomly located
on a small area. TX and RX antennas are assumed to be placed
at (rf,al) and (rf,al) in polar coordinates, respectively. TX
and RX antennas are colocated; that is they are close enough
together to see a specified target in the radar far-field with
the same radar cross section (RCS). Let us denote by X7 «as
the matrix of the transmitted waveforms in baseband. The i-th
column of X is the baseband waveform transmitted by the i-th
transmitter. Under far-field assumption we can define transmit
steering vector at azimuth angle 6 (normalized with respect to
the origin) denoted by ap;x1(6) as:

a— [ejQT”d’iW)’ejoﬂdZ(G)?._.,ej%”dﬁu(@)]T (5)
where df(0) = r!cos(f — af). If there exist K targets in the
far-field of the radar which are all at the same range cell and
at azimuth angles 6;s, considering narrowband and far-field
assumptions, the baseband signal received at the i-th receiver
can be approximated by:

K
r; = Z ﬁkej%"df(‘gk)Xa(ek) +n; (6)
k=1

where [is are complex coefficients proportional to RCSs of
the targets; d (6) = r! cos(6 — al); and n; is the noise vector
at the i-th receiver which is modeled by a circularly symmetric
complex Gaussain random vector. The complex reflection co-
efficients ;s are modeled by a zero-mean complex Gaussain
variable which is the case in the traditional swerling case I
model which yeilds to exponentially distributed RCS values
[17].

If we constitute a grid with linearly spaced azimuth angles
Y10 V25 -5 N, and set the spacing between grid angles so
close that each target azimuth angle will be approximately
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equal to one of the grid points, we can write (6) using an
sparse representation (N, >> K) in the matrix form as:

r;=v;s+n; 7

where ¥; = [e/X4()Xa(y,),..., ejQTﬂd:(VNg)Xa('qu)]
which is regarded as sensing matrix in i-th RX; s =
[51,82,...,5N,] is a sparse vector with s,, being zero if there
is no target at the corresponding grid angle, otherwise being
nonzero and equal to the reflection coefficient of the target at
that grid angle.
If we stack all received vectors from all RX antennas, the
total measurement vector r can be written as:
Tk = (e

r=[rl,. .. ,rk L8N Ts+ T 0T (8)

A\ n

So, a simple CS formulation is obtaind in which W is regarded
as the sensing matrix and n is the total noise vector. Provided
that s is sparse enough, it can be estimated using a variety of
sparse recovery methods such as [18]-[21]. We use NESTA
method proposed in [21] as our method for recovery of sparse
vectors which is known to be well-performed in the case of
complex vectors and matrices. After recovery of sparse vector
s, to estimate the DOAs of the targets, it is enough to obtain
the support of s.

IV. POWER ALLOCATION

As noted in section II, It is of great importance that the
coherence of the sensing matrix be as small as possible to
guarantee the recovery of larger number of sparse signals.
In [13], [15], the difference between the gram matrix of
the sensing matrix G £ W”® and an identity matrix is
minimized to reduce the coherence. Here we seek minimizing
the coherence itself using power allocation.

Note that in (6), there is no unit-norm restriction on the
columns of the transmit signal matrix X. If we extract powers
from X and restrict it to have unit-norm columns, the k-th
column of the sensing matrix can be stated in terms of TX
powers as:

w = b(y,) ® (XA(y,)p) ©)
where b(y;) = [ejz%dq(Vl), e AN ) ! is the receive
steering vector at azimuth angle 7, p = /p where p =
[p1,.-.,par]T is the power vector with p; being the transmit-
ted power at i-th TX and A(y,) = diag {a(v,)}. Note that X
in (9) has unit-norm columns. Here the transmitted waveforms
are known in advance (X is given) and we are just going
to obtain TX powers contained in p. It can be shown that
when the transmitted waveforms are orthogonal which means
X#X =1, the squared inner product between [-th and I’-th
columns of the sensing matrix W can be written as a quadratic
form of p [13]:

lufw > = p” (bwewef)p (10)
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where:
2

N
bur = b ()bl = |37 ¢ % (OO an
k=1

and ¢/ is the diagonal vector of Cyr = A (v,)A(y)). Tt is
obvious that the matrix in the above quadratic form is positive
semi-definite and so (10) is a convex function. The norm of
the [-th column of ¥ can also be computed using (10):

Jw| =N|p|* Vi=1,...,N, (12)

which is independent of [. Now, the coherence of the sensing
matrix can be computed using (10) as:

u/fw| p” (bwewef)p
ax ——— ' = ma; _
A (Jwge[[fpug]] N2 |[p]|*

We are going to minimize (13) with the constraint that the sum
of TX powers will be equal to a pre-defined total power value
P;. The denominator of the fraction in (13) is positive and
independent of [ and so can be neglected. We can also neglect
the square root and formulate the power allocation problem
as:

pu(®) = (13)

: T H
min max bureye
AR P ( ll’) P

T
s.t. lMxlp:Pta
The cost function in (14) is the maximum of several convex

functions. So it’s also convex. The above problem can be
reformulated by exploiting a dummy variable ¢ as:

(14)
p>0

min ¢
n T T H as)
st. Iyap=PF; p=0, p" (bwewey)p<t

The goal and the constraint functions of (15) satisfy the
conditions of a convex problem which can be efficiently
solved using different packages developed for solving convex
programs such as CVX [22].

V. SIMULATION

Consider the CL-MIMO configuration presented at section
I. Let M =10 TX and N = 12 RX nodes be randomly lo-
cated on a small disk of radius 10m following a uniform distri-
bution for their ranges and their angles. Orthogonal Hadamard
sequences with L = 32 are used as the transmitted waveforms.
We consider a azimuth angle grid as —7° : 0.05° : 7°. Note
that a small range of azimuth angles is considered here to
keep the computational burden of the simulation low. K = 3
targets are assumed to be present in the angle grid at —1°, 0°,
and 2°. Targets has been considered close to each other in the
angle grid to make more difficult the recovery of the scene.
The optimtal TX powers are obtained by solving (15) using
CVX. The total power P; is set to the number of transmiters
M. We also consider uniform power allocation and power
allocation scheme proposed in [13] for comparison. The pro-
posed method in [13] uses the squared norm of the difference
between the gram matrix of the sensing matrix and an identity
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matrix as the cost function. This cost in the case of orthogonal
waveforms takes the form of the sum of squared inner products
between cross columns of the sensing matrix. DOA estimation
error is taken as evaluation criterion. We consider two different
scenarios with different antenna locations (antenna locations
are random). The antenna locations in these scenarios has
been shown in Fig. 1. We conduct 1500 Monte Carlo trials
for each scenario to obtain the estimation error of the angles
of the targets. In each trial the complex reflection coefficients
of targets (ys are independently generated using a complex
Gaussian distribution with zero mean and with covariance
matrix Y3 = %ngg which means E{|8j|*} = 1 (swerling
case I model, as discussed in section III). The corresponding
plots for root mean square error (RMSE) of DOA estimation
versus SNR has been shown for the first and the second
scenarios in Fig. 2 and Fig. 3, respectively. The RMSE is
obtained by: RMSE = LS (/1o S0y, — 03)
where ékn is the estimate of ), in nth trial. These estimates
are obtained in each trial by selecting 3 dominant peaks of the
recovered signal. Finally, SNR is defined as 1/02 where o>
is the power of complex Gaussian noise at the receivers. As
can be seen form the curves, our proposed method for power
allocation outperforms the uniform power allocation scheme
and the method proposed in [13].

We also obtained the receiver operating characteristics
(ROC) curves of the angle estimates for the first scenario for
SNR = 10dB shown in Fig. 4. ROC curves have been obtained
according to 5000 independent runs. Here Py is defined as the
probability that all three targets are detected (at the grid points
they really exist) and Py, is defined as the probability of target
declaration in grid points in which there are actually no targets.
It is also indicated by Fig. 4 that our method has better DOA
estimation performance compared to two other methods.

VI. CONCLUSION

In this paper, we proposed a power allocation scheme
in a colocated MIMO radar configuration employing sparse
modeling, to improve the DOA estimation performance. To
obtain optimal powers, a convex optimization problem was
derived which minimizes the coherence of the sensing matrix
with a total power constraint. Simulation results was shown
that our proposed method have better estimation accuracy
compared to existing methods.
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