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Abstract—Co-prime arrays and samplers are popular sub-
Nyquist schemes for estimating second order statistics at the
Nyquist rate. This paper focuses on the perturbations in the
array locations or sampling times, and analyzes its effect on
the difference set. Based on this analysis we propose a method
to estimate the autocorrelation which makes best use of the
sampled data in order to improve the estimation accuracy of the
autocorrelation and hence the spectral estimate. Our analysis
indicates that such an advantage is limited only to samplers,
and does not carry over to the antenna arrays. In addition,
we obtain expressions for the computational complexity of the
autocorrelation estimation and provide an upper bound on
the number of multiplications and additions required for its
hardware implementation.

I. INTRODUCTION

Sampling jitter has been studied in the literature for the
case when the samples are acquired at the Nyquist rate. The
procedures for spectral estimation in the case of independent
jitter is considered in [1]. The authors also develop procedures
for autocovariance estimation under independent and depen-
dent jitter conditions. The properties and relative efficiencies of
these estimators are also discussed. The work in [2], analyses
the effect of timing jitter on the spatio-frequency covariance
matrix which contains delay and direction information. Meth-
ods for estimating the jitter variance and for compensating
it have also been addressed. Covariance estimation from
discrete time observations under jitter and delay conditions
is studied in [3], and consistency and asymptotic normality
of the estimators are established. System identification under
the influence of stochastic sampling jitter noise is considered
in [4]. It also provides ways to mitigate this effect for the case
when the jitter is unknown and not measurable.

There is little work in the literature on sampling jitter
analysis for sub-Nyquist arrays and sampling schemes. A jitter
reconstruction system model for sub-Nyquist sampled signals
using an annihilating filter and Slepian functions is proposed
in [5]. Co-prime and nested samplers are analyzed in spatial
and temporal domains under perturbed conditions in [6], [7].
It includes additive perturbations and sampling jitters. It is
shown that the errors in the estimated autocorrelation due
to non-ideal co-prime sampling is bounded under certain
assumptions. Nearly all the work in this domain has analysed
the perturbations in a statistical sense. We propose to analyze
the effect of sampling jitter on the difference set and describe
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Fig. 1. Co-prime array structure without and with jitter

ways to efficiently estimate the second order statistics under
these conditions.

Section II describes the sampling or array structure under
perturbations. The difference set is analyzed in Section III,
while the weight function for a blind as well as a non-
blind system is described in Section IV. The computational
complexity of the proposed scheme is studied in Section V
followed by concluding remarks.

II. CO-PRIME STRUCTURE UNDER PERTURBATION

The prototype co-prime array has two sub-arrays with inter-
element spacing of Nd and Md, where N and M are co-prime
numbers. The extended co-prime array has one of its sub-array
extended over an extra period. This gives a filled difference set
in the range −(MN − 1) to (MN − 1), which is not possible
with the prototype co-prime array.

Practically, the locations of the array elements could dif-
fer from the ideal or design positions. This could be due
to manufacturing and positioning errors, turbulence that the
system encounters, or clock offsets in the case of sampling.
The array structures without and with this perturbation or jitter
are shown in Fig. 1. The discussion in this paper will focus on
samplers and jitters in sampling times. We will assume that
this random jitter, represented by ρ, is less than 1/4

th of the
Nyquist period d, (i.e., |ρ| < d

4 ), to ensure that the difference
set of the perturbed array has values within a tolerance band of
± 1

2 with respect to the unperturbed difference values. This is a
reasonable assumption as the jitter in practice is not expected
to be large and is also made for the ease of tractability in
assigning the estimates in the range l ± 1

2 unambiguously to
difference value l in the unperturbed structure.
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III. DIFFERENCE SET IN THE PRESENCE OF JITTER

A detailed discussion on the difference set of the prototype
co-prime array has been presented in [8]. The definitions for
the self and cross differences given there also holds in the
presence of sampling jitter, except for an additional jitter term.
The two perturbed co-prime samplers acquire data which are
now represented as x(Mn + ε1(n)) and x(Nm + ε2(m)),
where ε1(n) and ε2(m) represent the normalized instantaneous
displacement or jitter from the true sampling instants with
n ∈ [0, N −1] and m ∈ [0,M −1]. The self difference set for
these two samplers are denoted by L+

SM and L+
SN respectively,

with L−SM and L−SN representing the negative self differences.
L+
S and L−S are the union of the positive self differences and

the negative self differences respectively, while LS represents
the union of all the self differences. The cross difference set
is denoted by L+

C , while L−C represents the negative of the
values in L+

C . LC represents the union of the positive and the
negative cross difference sets.

The union of the positive and negative self differences of
the two samplers is given by:
L+
SM ∪ L

−
SM = (Mn1 + ε1(n1))− (Mn2 + ε1(n2))

= M(n1 − n2) + ∆1(n1, n2) (1)
and similarly,

L+
SN ∪ L

−
SN = N(m1 −m2) + ∆2(m1,m2) (2)

where ∆1(n1, n2) = ε1(n1) − ε1(n2) and ∆2(m1,m2) =
ε2(m1)− ε2(m2) with ∆1(n1, n2) = 0 and ∆2(m1,m2) = 0
when n1 = n2 and m1 = m2, respectively. The self
differences are shown in Fig. 2(a) and 2(b) for M = 4 and
N = 3.

The cross difference set is given by:
L+
C = (Mn+ ε1(n))− (Nm+ ε2(m))

= Mn−Nm−∆12(n,m) (3)
and similarly,

L−C = Nm−Mn+ ∆12(n,m) (4)
where ∆12(n,m) = ε2(m) − ε1(n). The cross differences
under perturbation are shown in Fig. 2(c) and 2(d).

Let us consider an example for a better understanding of
the difference set in the presence of sampling jitters. The
actual sampling times vary about the ideal sampling times by
ρ ∈

(
−d

4 ,
d
4

)
, which implies that the normalized instantaneous

jitter ε1(n), ε2(n) ∈ (−0.25, 0.25). Next, we assume that the
jitters for the two samplers, with M = 4 and N = 3, are:
ε1(n) = {0.1,−0.1, 0.2} and ε2(m) = {0.01, 0.1,−0.02,−0.2}

(5)
The self and cross differences in such a scenario are shown in
Fig. 3 and interesting insights can be drawn from these which
are presented as Proposition I below. We will assume that
the jitter variables; ∆1(n1, n2), ∆2(m1,m2), and ∆12(n,m)
modify the ideal difference locations creating new unique
locations around the ideal location.
Proposition I:

1) There are a maximum of N(N−1)
2 + 1 distinct values in

L+
SM and L−SM .
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Fig. 2. Difference set in the presence of sampling jitters
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(d) Cross differences L−C
Fig. 3. Difference set for jitter values given in (5)

2) There are a maximum of M(M−1)
2 + 1 distinct values in

L+
SN and L−SN .

3) There are a maximum of M(M−1)
2 + N(N−1)

2 +1 distinct
values in L+

S and L−S .
4) There are a maximum of M(M − 1) + N(N − 1) + 1

distinct values in LS .
5) There are a maximum of MN distinct values in L+

C and
L−C .

6) There are a maximum of 2MN distinct values in LC .
7) The self differences may not form a subset of the cross

differences, i.e. LS 6⊆ LC .
8) The maximum number of unique differences possible in

set L = LC ∪LS is given by (M+N)(M+N−1)+1.
As shown in Fig. 2(a), the lower and upper triangle represent
the self difference sets L+

SM and L−SM , respectively with the
diagonal being common to both. The number of unique values

is given by: 1 +
N−1∑
n=1

n = 1 + N(N−1)
2 . Similar analysis
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holds for the sets L+
SN and L−SN . L+

SM and L+
SN (L−SM

and L−SN ) have ‘0’ as a common value, hence L+
S (L−S ) has

M(M−1)
2 + N(N−1)

2 + 1 unique values. The only overlapping
self difference value between sampler x(Mn + ε1(n)) and
x(Nm + ε2(m)) i.e. (L+

SM ∪ L
−
SM ) and (L+

SN ∪ L
−
SN ) is

‘0’. Hence the number of unique values in LS is given by:
2
(

M(M−1)
2 + N(N−1)

2 + 1
)
−1 = M(M−1)+N(N−1)+1.

This proves Proposition I-1 to I-4.
Proof of Proposition I-5: Let lc1 = Mn1+ε1(n1)−(Nm1+

ε2(m1)) and lc2 = Mn2 + ε1(n2)− (Nm2 + ε2(m2)) be the
elements in set L+

C . Let us assume that lc1 = lc2 for some
0 ≤ n1, n2 ≤ N − 1 and 0 ≤ m1,m2 ≤M − 1, then:

M

N
=

(m1 −m2) + ∆2(m1,m2)−∆1(n1,n2)
N

n1 − n2
(6)

Since ε1(n1), ε1(n2), ε2(m1), and ε2(m2) take values in the
range (− 1

4 ,
1
4 ), we have ∆1(n1, n2) and ∆2(m1,m2) in the

range (− 1
2 ,

1
2 ). Using the extreme values of this range, we

obtain the range for ∆2(m1,m2) − ∆1(n1, n2) as (−1, 1).
When ∆2(m1,m2)−∆1(n1, n2) = 0, we have M

N = m1−m2

n1−n2
,

which can never hold since M and N are co-prime, and m1−
m2 < M and n1 − n2 < N . Similarly, when ∆2(m1,m2)−
∆1(n1, n2) = ±1, we have M

N =
(m1−m2)± 1

N

n1−n2
. In general,

1
N < 1 and the right hand side will never equal the co-prime
ratio. Hence, set L+

C has MN unique differences. A similar
argument holds for L−C , thus proving Proposition I-5.

Proof of Proposition I-6: Let lc1 = Mn1+ε1(n1)−(Nm1+
ε2(m1)) and lc2 = Nm2 + ε2(m2)− (Mn2 + ε1(n2)) be the
elements in the sets L+

C and L−C , respectively. Let us assume
that lc1 = lc2 for some 0 ≤ n1, n2 ≤ N−1 and 0 ≤ m1,m2 ≤
M − 1, then:

M

N
=

(m1 +m2) + ∆12(n1,m1)+∆12(n2,m2)
N

n1 + n2
(7)

∆12(n1,m1) and ∆12(n2,m2) also have values in the range
(− 1

2 ,
1
2 ), hence ∆12(n1,m1) + ∆12(n2,m2) will be in the

range (−1, 1). When ∆12(n1,m1) + ∆12(n2,m2) = 0, we
have M

N = m1+m2

n1+n2
. Since m1 +m2 < 2M and n1 +n2 < 2N ,

there is a possibility of the right hand side being equal
to the co-prime ratio. However, under the assumption that
∆12(n1,m1) + ∆12(n2,m2) 6= 0, Proposition I-6 holds. Let
us assume that ∆12(n1,m1)+∆12(n2,m2) takes the extreme
values of ±1 i.e., M

N =
(m1+m2)± 1

N

n1+n2
. Then m1 +m2 + 1

N is
not an integer and hence we cannot obtain the co-prime ratio.
Since L+

C and L−C have MN unique differences, it can safely
be concluded that LC = L+

C ∪ L
−
C has 2MN unique values.

Proof of Proposition I-7: Let lc = Mn + ε1(n) − (Nm +
ε2(m)) be an element in the set L+

C . Substituting m = 0
in this equation gives lc = Mn − ∆12(n, 0). Substituting
n2 = 0 and n1 = n in the self difference equation (1)
gives ls = Mn + ∆1(n, 0). lc and ls are not equal un-
der the assumption that −∆12(n, 0) 6= ∆1(n, 0). Next, we
substitute n = 0 in the cross difference equation giving
lc = −Nm −∆12(0,m). Substituting m1 = 0 and m2 = m
in (2) gives ls = −Nm + ∆2(0,m). Then lc 6= ls under the
assumption that −∆12(0,m) 6= ∆1(n, 0). A similar argument
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Fig. 4. Combined set of a blind system

holds true for lc ∈ L−C . This proves the claim that LS * LC .
From Proposition I-7 we can conclude that the number of

unique values in the set L = LC∪LS is the sum of the distinct
values in LS and LC given by Proposition I-4 and I-6 i.e.,
2MN+M(M−1)+N(N−1)+1 = (M+N)(M+N−1)+1.

IV. WEIGHT FUNCTION IN THE PRESENCE OF JITTER

We have obtained the expression for the weight function
of the prototype co-prime array in [8]. Here we will obtain
the weight function for the prototype co-prime array in the
presence of sampling jitter. We describe two types of systems:
a blind system and a non-blind system. A blind system is one
in which the presence of jitters in the sampling instants is
unknown, and the autocorrelation estimation follows the same
procedure as in the ideal scenario. While a non-blind system
tries to improve the estimation by efficiently utilizing the
available data under the assumption that the sampling instants
are perturbed.

A blind system assumes that x(Mn) = x(Nm) for n =
m = 0, and the combined set is shown in Fig. 4(a). Such a
system would assume a mapping of [l − 1

2 , l + 1
2 ) → l, refer

Fig. 4(b), under the false assumption that ε1(n) = ε2(m) = 0
which is the case for practical implementation. The number
of sample pairs contributing to the estimate prior to mapping
is given by Proposition II, while the weight function of the
blind system after mapping turns out to be same as that of the
prototype co-prime array, as evident from Fig. 4(b).

We refer to this as a blind system since both in the presence
of jitter as well as under ideal conditions we follow the same
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estimation procedure, resulting in the same weight function as
that for the prototype co-prime array.
Proposition II: Let the number of elements contributing to
the estimation at difference value l be denoted by z(l), where
l represents the unmapped location and need not be an integer.

1) z(l) = 1, {l ∈ L+
C}

2) z(l) = 1, {l ∈ L−C}
3) z(l) = 1, {l ∈ L+

C ∪ L
−
C}

4) z(l) = M +N, for l = 0.
5) z(l) = 1, l ∈ L+

SM ∪ L
−
SM − {0}

6) z(l) = 1, l ∈ L+
SN ∪ L

−
SN − {0}

Proposition II is pictorially depicted in Fig. 5 for M = 4 and
N = 3. The example with specific jitter values, as described
in the previous section has also been shown in this figure
in shaded boxes. Proposition II follows from the previous
discussion and Proposition I.
We seek to improve the number of unique sample pairs for
estimation in the presence of sampling jitter by efficiently
using the available data. The non-blind system maps the
differences l ± 1

2 → l, thus leading to Proposition III.
Proposition III: Let the number of elements contributing to
the estimation at difference value l for the non-blind system
be denoted by znb(l), where l is an integer that represents the
mapped location.

1) For l ∈ L+
SM ∪ L

−
SM − {0},

znb(l) = (N − i) + 1, for l = ±Mi, 1 ≤ i ≤ N − 1

2) For l ∈ L+
SN ∪ L

−
SN − {0},

znb(l) = (M − i) + 1, for l = ±Ni, 1 ≤ i ≤M − 1

3) For l = 0, znb(l) = M +N + 1
4) For l ∈ LC − LS , znb(l) = 2.

The difference between the weight function for the non-blind
system and the ideal prototype co-prime array is an additional
unique sample pair mapped to the self differences (except
for difference value ‘0’) from sets L+

C and L−C as the self
differences are not a subset of the cross differences.

For the case when l = 0, the self differences have M +N
unique sample pairs plus an additional pair from the set L+

C i.e.
(x(ε1(0)), x(ε2(0))). Thus leading to M+N+1 contributors.
Note that the set L−C also gives an estimate at difference value
‘0’ but is generated by the same pair (x(ε1(0)), x(ε2(0))) and
hence does not provide additional sample pair.

The weight function of a non-blind system based on Propo-
sition III is shown in Fig. 6(a), while Fig. 6(b) displays
the weight function for a blind system after mapping, which
as described previously, is the same as the prototype co-
prime array weight function. Clearly, the proposed non-blind
system has more number of contributors for autocorrelation
estimation.

Therefore, for practical estimation of the second order
statistics in the presence of sampling jitter we should first
compute the estimate using the self differences obtained by the
individual samplers (Fig. 2(a) and 2(b)), having contributors
as shown in Fig. 5(a) and 5(b). Next, we estimate the cross
differences (Fig. 2(c) and 2(d)), having contributors as shown
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Fig. 5. Jitter perturbed weight function prior to mapping for M = 4 and
N = 3.
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Fig. 6. Jitter perturbed weight function post-mapping for M = 4 and N = 3.

in Fig. 5(c) and 5(d). The advantages obtained for a co-prime
sampler are not applicable to an antenna array, since the zeroth
location has only one antenna element.

V. COMPUTATIONAL COMPLEXITY

Given the input samples over one co-prime period, we
determine the cost for hardware implementation of autocor-
relation estimation in terms of the number of multiplications
and additions. This is directly related to the weight function
of the co-prime sampler. The proposed non-blind system is
expected to require a slightly higher number of multipliers
and adders as compared to the blind system.

Let mb(l) and mnb(l) represent the number of multiplica-
tions required for autocorrelation estimation at each difference
value l, while ab(l) and anb(l) represent the corresponding
number of additions. The subscripts ‘b’ and ‘nb’ refers to
the blind and non-blind system, respectively. The number of
multiplications and additions required per difference value are
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given in (8) and (9) respectively. zb(l) represents the weight
function of the blind system and is given in [8].

mb(l) = zb(l) and mnb(l) = znb(l) (8)

ab(l) = zb(l)− 1; {l|zb(l) > 1}
anb(l) = znb(l)− 1; {l|znb(l) > 1} (9)

Let CMb
denote the total number of multiplications required

to estimate the autocorrelation over one co-prime period for a
blind system and is obtained as the cumulative sum of mb(l)
for l ∈ [0,MN − 1] as given below:

CMb
=

MN−1∑
l=0

mb(l)

=
N−1∑
n=0

(N − n) +
M−1∑
m=0

(M −m) + (N − 1)(M − 1)− 1

=
(M +N)(M +N − 1)

2
(10)

Let CMnb
denote the total number of multiplications for a

non-blind system and is obtained as the cumulative sum of
mnb(l):

CMnb
=

MN−1∑
l=0

mnb(l)

=

N−1∑
n=0

(N − n+ 1)

+
M−1∑
m=0

(M −m+ 1) + (N − 1)(M − 1)− 1

=
(M +N)(M +N + 1)

2
(11)

Let CAb
denote the total number of additions required to

estimate the autocorrelation over one co-prime period for a
blind system and is obtained as the cumulative sum of ab(l)
for l ∈ [0,MN − 1] as given below:

CAb
=

∑
{l|mb(l)>1}

ab(l) =

MN−1∑
l=0

mb(l)−
∑

{l|mb(l)>1}

1

=
(M +N)(M +N − 1)

2

−
(
M +N − 1 +

(N − 1)(M − 1)

2

)
=

M(M − 2) +N(N − 2) +MN + 1

2
(12)

Let CAnb
denote the total number of additions for a non-blind

system and is obtained as the cumulative sum of anb(l):

CAnb
=

∑
{l|mnb(l)>1}

anb(l) =
MN−1∑
l=0

mnb(l)−
∑

{l|mnb(l)>1}

1

=
(M +N)(M +N + 1)

2

−
(
M +N − 1 +

(N − 1)(M − 1)

2

)
=

M2 +N2 +MN + 1

2
(13)

Therefore, the proposed non-blind system requires (M + N)
additional additions and multiplications as compared to the
ideal prototype co-prime array as well as the non-ideal blind
system. It is important to note that the overall cost will also
depend on the total number of snapshots (or co-prime periods,
L) being considered for the estimation; and will be L times the
number of additions and multiplications derived above (plus
some overheads to combine the snapshots). The computational
complexity of the ideal prototype co-prime array derived here
is contrary to the claims made in (14) and (15) of [9].

VI. CONCLUSION

The effect of sampling jitter on the difference set was
studied and analyzed for co-prime arrays and samplers. We
described two systems for autocorrelation estimation: a blind
system and a non-blind system. The blind system under
utilizes the information present in the acquired data and
has a mapped weight function similar to the ideal prototype
co-prime array. On the other hand the proposed non-blind
system has a larger number of contributors for autocorrelation
estimation and hence the potential for high fidelity estimation
in the presence of jitter. We also derive expressions for the
computational complexity of the two systems. The advantages
obtained from a sampling perspective cannot be emulated for
the antenna arrays since the zeroth location has only one
antenna element.
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