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Abstract—An emerging issue in large-scale inverse problems is
constituted by the interdependency between computational and
recovery performance; in particular in practical application, such
as medical imaging, it is crucial to provide high quality estimates
given bounds on computational time. While most work in this
direction has gone down the lines of improving optimisation
schemes, in this paper we are proposing and investigating a
different approach based on a multi denoising approximate
message passing (MultiD-AMP) framework for Compressive
Sensing (CS) image reconstruction which exploits an hierarchy of
denoisers by starting with a low fidelity model and then using the
estimate as starting point for a higher fidelity models through an
iterative reconstruction algorithm. MultiD-AMP achieves lower
time complexity and same accuracy compared to using the same
most accurate denoiser as in D-AMP. The novelty of our approach
is based on exploiting the deterministic state evolution of AMP,
which means the predictability of the recovery performances, to
design a strategy for selecting the denoiser from a set ordered
by both computational complexity and statistical efficiency. We
apply the MultiD-AMP framework for image reconstruction
given noisy Gaussian random linear measurements. Furthermore,
we extend and show the applicability of MultiD-AMP for CS to
image reconstruction.

Index Terms—Compressive Sensing, Approximate Message
Passing, Denoising, Computational complexity

I. INTRODUCTION

The enormous growth in data size is becoming an issue,
both for high dimensional inverse problem in medical imaging
and large dataset in machine learning. Moreover, real time
applications require a certain level of accuracy to be achieved
within a constrained amount of time and it imposes a new
perspective in designing reconstruction algorithms compared
to classical iterative methods.

In machine learning problems where data is generally
abundant, some works recently have considered strategies for
subsampling or dynamically increase data. In particular in [1]
and [2], a scheme for dynamically increasing the sample size is
proposed for reducing the computational complexity of itera-
tive methods, such as stochastic gradient descent, which gener-
ally scales with the size of training samples. For optimization
and denoising problems, [3] opens up a new insight to this
problem, developing the concept of ”algorithmic weakening”
and exploiting a hierarchy of convex relaxations, ordered by
both computational and statistical efficiency. However, little
has been proposed in the context of CS and other imaging
problems; some recent works suggest to utilize an hierarchy
of models, within proximal gradient methods, for solving
composite optimization problems with lower complexity [4].

Another work [5] examined the time-data trade-off for image
interpolation problem, by varying the amount of smoothing
applied to the convex optimization problem. However, most
of these works have addressed the problem of computational
and statistical trade-off in terms of modifying or improving a
statistical optimization scheme, while in this work we pursue
a different approach based on building a more general family
of denoisers.

In this paper we are interested in investigating and develop-
ing a computationally fast strategy for Denoising Approximate
Message Passing (D-AMP) which is a compressed sensing
algorithm that exhibits fast convergence and excellent perfor-
mance through the application of a sequence of sophisticated
denoising procedures such as BM3D [6], [7]. D-AMP can be
seen as an iterative algorithm that uses sampled data to perform
a sequence of updates each of them involves a gradient
step, which requires the forward and back projection, and a
denoising step. These denoising steps tend to dominate the
computational complexity therefore, taking inspiration from
[8] we propose to exploit a hierarchy of denoisers to achieve
the same overall performance but at reduced computational
cost.

A. Main Contribution

D-AMP algorithm [8] has been analysed in terms of infer-
ential accuracy without considering computational complexity.
This is an important missing aspect since the denoising is often
the computational bottleneck in the D-AMP reconstruction.
The approach that is proposed in this paper is different, we
aim to derive a mechanism for leveraging a hierarchy of signal
approximations and minimize the overall time complexity
[3]. The intuition is based on the observation that at earlier
iterations, when the estimate xk is far according to some
distance from the true x, the algorithm does not benefit
significantly from the use of a complicated denoiser, since
the attainable structure from the signal is poor. Thus, almost
the same performance can be achieved through simpler faster
denoisers. This leads to the idea of defining a family/hierarchy
of denoisers of increased complexity; the main challenge is
to define a switching scheme. This is based on an empirical
finding that in MultiD-AMP we can predict exactly, in the
large system limit, the evolution of the MSE. We can exploit
a bound on the state evolution of a training set of images to
find a proper switching strategy.
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II. MULTI DENOISING-AMP FOR CS SYSTEM MODEL

In this paper we consider the reconstruction of a structured
signal belonging to a certain class C, i.e. x∗ ⊂ C, given the
linear measurement

y = Ax∗ +w, (1)

with M < N , where y ∈ RM is the vector of measurements,
A ∈ RM×N is a Gaussian random measurement matrix, x∗ ∈
RN represents the signal of interest and w ∈ RM is the noise
with w ∼ N (0, σ2

wI). A denoiser is a non-linear mapping

Dσ(·) : RN → RN , x→ Dσ(x) (2)

that gives an estimate of x∗, given some noisy measurements
x = x∗ + σε, ε ∼ N (0, I) and σ is the standard deviation of
the noise. The proposed MultiD-AMP algorithm follows the
D-AMP iteration:

rk = xk +AT zk

xk+1 = Dk
σk(r

k)

zk+1 = y −Axk +
N

M
zkdivDk

σk(r
k)

σk+1 =
||zk+1||22
M

(3)

where xk is the estimate for x∗, zk is the estimate of the
residual in the measurement domain at the k-th iteration
and divDk

σk(·) denotes the divergence of the denoiser. It
is important to stress that the denoising functions Dk

σk are
dependent on k, i.e. for a sequence of denoisers Dk

σk , which
belong to a set D, Dk ∈ D, ∀k.

Generally our approach can be formulated in terms of the
time-data-risk class

{η(N),M(N), R(N)} (4)

of estimation problems where we want to estimate a N -
dimensional signal with a risk R(N), given M(N) measure-
ments and with computational time η(N).

The main challenge is to develop a switching strategy to
achieve the same accuracy as the most accurate denoiser and
lower computational time, given the set of denoisers D ordered
in terms of the risk and time complexity.

The key intuition relies on exploiting a method for pre-
dicting the performance recovery for each k-th iteration, for
the set of denoisers D. This can be obtained by the State
Evolution (SE) of MultiD-AMP algorithm which represents
a tool to predict the expected Mean Square Error (MSE) at
each iteration. While it is possible to use the MSE estimate
from the SE within the D-AMP algorithm to select the best
performing denoiser at each iteration, this does not account for
the computation cost of each denoiser. We therefore exploit the
SE given a set of trained images to determine which denoiser
to select at each stage.

In the next Section, we will detail how to construct an
hierarchy of denoisers based on the risk and complexity
and we will develop a possible switching rule based on the
deterministic SE.

III. HIERARCHY OF DENOISERS

Before introducing the SE, we need to define the following:
Definition 1: The Risk of a denoiser Dσ(·) is defined as

R(x∗, σ2|D) =
E
[
||Dσ(x

∗ + σε)− x∗||22
]

N
(5)

where the expectation is with respect to ε ∼ N (0, I).
In this work we consider the set D which contains n denoisers
with the property to be proper for x∗ ∈ C, i.e.

sup
x∗∈C

R(x∗, σ2|Dk) ≤ κσ2 (6)

and monotone

∀x∗,∀σ2
γ ≤ σ2

ξ , R(x
∗, σ2

γ |Dk) ≤ R(x∗, σ2
ξ |Dk) (7)

For this class of denoisers, we need to define an ordering for
the risk and complexity. Each denoiser in the n-dimensional
set D is indexed through 2 parameters: its risk R and the time
complexity η,

D = {D1
σ(R

1, η1), . . . , D
k
σ(R

k, ηk), . . . , D
n
σ(R

n, ηn)} (8)

We propose a nested hierarchy of increasingly tighter approx-
imations ordered over the risk

sup
x∗∈C

R(x∗, σ2|Dn) < . . . < sup
x∗∈C

R(x∗, σ2|D1) (9)

and we expect that the runtime is inversely proportional to the
risk, i.e.

η1 < . . . < ηn (10)

The overall time of the algorithm at iteration t is

T (k) = ηi(k) + T (k − 1) (11)

where k ∈ N+, T is a function T : N→ R and ηi(k) denotes
the i-th denoiser utilized at iteration t.
The hierarchy of denoisers for the class, defined through
the relations (9) and (10), is one of the possible choices.
For example, if we relax the property of the denoiser to
be proper, considering the class of bounded denoisers, i.e.
||Dσ(x)− x||22/N < Cσ2, ∀x, or non monotone denoisers, a
different ordering in term of risk has to be defined.
Our approach aims to achieve the accuracy given by the
denoiser with minimimum risk in the set, Dn

σ(R
n, ηn), with

a computational time η < k · ηn, where k is the number of
iterations. The strategy to determine the d optimal points

t∗ = {t1, . . . , td} (12)

across iterations where to switch denoiser is based on the
prediction of the dynamics of MultiD-AMP.
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IV. STATE EVOLUTION OF MULTID-AMP

The deterministic SE generates a sequence given x∗ as an
arbitrary, fixed vector in C

θk(x∗, δ, σ2
w, D

k
σk) =

E
[
||Dk

σk(x
∗ + σkε)− x∗||22

]
n

= R(x∗, (σk)2, Dk
σk) (13)

where (σk)2 = 1
δ θ
k(x∗, δ, σ2

w, D
k
σk) + σ2

w, and to note that
the SE depends on x∗. The following finding, observed in [8],
shows that the SE of MultiD-AMP can predict the MSE.

Finding 1: Assuming the conditions:
• the elements aij , i, j ∈ R of A are i.i.d. Gaussian, aij ∼
N (0, 1

M );
• the noise w is i.i.d. Gaussian

then the State Evolution of MultiD-AMP (which is the risk of
Dk
σt
(·)) predicts the MSE ∀k

θk(x∗, δ, σ2
w, D

k
σk) = lim

N→∞

1

N
‖xk − x∗‖22 (14)

where we highlighted the dependency of θk on the true signal
and the undersampling ratio δ = M

N . Then, for finite δ and
n→∞, the state evolution predicts the MSE of MultiD-AMP
To get back to the class of problem (4), from Eq. (14) we
obtain that the estimation error is connected, in the large
system limit, with the risk and, from the relation (10), the
complexity is given by the runtime.

V. SWITCHING STRATEGY

At this point we are ready to define the switching strategy g
as a function of the risk R(x∗, σ2|Dk) and the mapping from
continuous to discrete time T (k),

g(θ(x∗, δ, σ2
w, D

k
σk), T (k)) (15)

Since the SE depends on x∗ (true signal), θ(x∗, δ, σ2
w, D

k
σk)

should be calculated a priori based on a set of ”representative
signals” as training data, i.e. signals {x1t, . . . ,xPt}, where P
is the dimension of the set of training signals, which belong
to the same class of x∗,

{x1t, . . . ,xPt} ,x∗ ∈ C (16)

Given a training set of data, we generate the State Evolution
and for each T (k) (time T continuous variable at iteration
k discrete variable); since the function θ is defined over the
discrete set T (k), it is meaningful to define the difference
quotient function g over discrete points in the following way:

g(θT (k)(x∗, D
T (k)

σT (k)), T (k)) =
θT (k)(·)− θT (k−1)(·)
T (k)− T (k − 1)

(17)

which can be geometrically interpreted as the angular coeffi-
cient of the straight line intersecting the 2 points.
The chosen greedy criteria for selecting the sequence t∗ for
switching Dσ(·) is

|g(θT (k+1)(·), T (k + 1))| ≤
∣∣∣∣g(θT (k)(·), T (k))

4

∣∣∣∣ (18)

The geometrical interpretation for the switching rule (18) is
shown in Fig. 1; for each interval [T (k−1), T (k)], the absolute
value of the function (17) represents the slope of the tangent
line to the function θ at a point T (ka), T (k − 1) < T (ka) <
T (k). Therefore the relation (18) indicates that we greedly
decide to change denoiser when the rate of decrease of θ is
less than 1

4 of the previous interval.

Fig. 1. Geometrical interpretation of the switching rule.

The intuition comes from analysing the behaviour of the
derivative of the risk (SE) over time (complexity) evaluated
at discrete time instants. The reason for using this condition
is that when the slope at the discrete time T (t + 1) tends
to decrease significantly from the one computed at T (k) this
implies that the rate of convergence of the ”low complex”
denoiser is decreasing, i.e. the denoising algorithm tends to
approach the convergence and we need to switch to the
denoiser with lower risk at the price of higher time complexity.

VI. RESULTS

MultiD-AMP has been tested on 256 × 256 Lena image
with i.i.d. Gaussian random measurements, Gaussian noise
and 0.2 undersampling ratio. As a proof of principle, we use
2 denoisers, discrete Wavelet soft thresholding (DWT) and
BM3D and we assume that

∀σ, R(x∗, σ2|DDWT ) ≤ R(x∗, σ2|DBM3D)

ηDWT ≤ ηBM3D (19)

and we seek for the optimal iterate t∗ to switch between the
2 denoisers, i.e. we learn one parameter t∗ based on a small
set of training images.
In the experiment 4 ”traditional” images, boat, barbara, house,
peppers have been used as training images; the switching point
t∗ is obtained with the greedy procedure (18) on the SE and
the t∗ mostly selected in the SE of each training image is the
one used in the reconstruction.
Figure 3 shows that by changing the denoisers in t∗, we obtain
the same MSE at convergence as the one achieved by the most
powerful denoiser, i.e. BM3D, with lower computational time
compared to a single denoising AMP (DWT-AMP and BM3D-
AMP).
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Fig. 2. CS reconstruction problem: (a) Original image, (b) MultiD-AMP, (c) DWT-AMP

Fig. 3. MSE - time reconstruction plot: comparison MultiD-AMP, DWT-AMP,
BM3D-AMP

It is worth highlighting how our strategy yields to exploit the
low complexity of DWT at early iterations, when the MSE
error is generally high, and then using the high accurate BM3D
denoiser at the cost of higher computational time.

Additionally the proposed MultiD-AMP framework has
been applied using as hierarchy of denoisers the Fast Multi-
level Wavelet structure described in [9]. The CS system model
is described by the algebraic relation in Eq. (1) and x is
represented through the synthesis wavelet basis W, x = Wξ.
We consider the MultiD-AMP algorihtm described by the
following update rule

rk = xk +AT zk

xk+1 = (WTσkWT )ks(r
k)

zk+1 = y −Axk +
N

M
zkdiv[WTσkWT ]ks(r

k)

σk+1 =
||zk+1||22
M

where (WTσkWT )ks is dependent on the wavelet sub-bands
s, which are changing across iterations k, by the Multi-level V-
cycle scheme described in [9] and Tσk is the soft thresholding
function defined for x ∈ C as

Tη(x) = sgn(x)max(|x| − η, 0) (20)

The Multi-level Wavelet AMP has been tested with the same
setup used for the previous simulation; Fig. 4 shows the
performance of the MSE in actual time for the DWT-AMP and
the Multi-level Wavelet - AMP (both with soft thresholding
non linear function). We can notice how exploiting a multigrid
procedure in the denoising step, i.e. considering a scheme for
selecting sub-bands, yields to a reduction in time complexity
especially at earlier iterations; the blue curve correspond to the
blue curve in Fig. 3(DWT) and as expected both the Multi-
level and DWT achieve the same MSE at convergence.

Fig. 4. MSE - time reconstruction plot: comparison Multi-level Wavelet-AMP,
DWT-AMP
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VII. CONCLUSIONS

In this paper we have proposed a new approach in terms
of risk-time trade-offs for reduce the time complexity of the
family of D-AMP iterative reconstruction algorithms.

In particular a strategy for designing an hierarchy of de-
noisers in MultiD-AMP has been proposed and successfully
tested. It is important to highlight that this framework al-
lows the dynamic switching between denoisers based on the
State Evolution which provide a powerful way to predict the
performances of MultiD-AMP. Furthermore, we proposed a
framework following the idea of [3] for image reconstruction
and we have built a ordered set of denoisers which constitutes
a more general scenario than convex nested set.

Finally we have applied the proposed MultiD-AMP concept
with a Multi-level Wavelet denoiser [9] which yields to an
improvement in time complexity compared to the full DWT.
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