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Abstract—Missing samples are very common in fetal heart
rate (FHR) recordings due to various reasons including fetal or
maternal movements and misplaced electrodes. They introduce
distortions and cause difficulties in their analysis. In this paper,
we propose a Gaussian process–based method that can utilize
other intrapartum signals (e.g., uterine activity and maternal
heart rate) to recover the missing samples in FHR recordings.
The proposed approach was tested on a short real FHR recording
segment and its performance was compared with that of cubic
spline interpolation which is widely used in pre-processing of
FHR recordings. Our results show that the proposed approach,
with utilization of UA signals, achieves 2.35 dB to 14.85 dB better
recovery performance. Furthermore, even when the percentage
of missing samples is more than 50%, the mean square error of
this approach is still below one beat per minute.

I. INTRODUCTION

The most common approach of monitoring fetal well-being

in labor is by Cardiotocography (CTG), which measures FHR

and uterine activity (UA) signals. Both signals are visually

inspected by clinicians. Clinical guidelines regarding FHR

evaluation are available from both the National Institute of

Child Health and Human Development (NICHD) and the

International Federation of Gynecology and Obstetrics (FIGO)

[1], [2]. However, it is well known that the interpretation

of FHR signals is prone to high intra- and inter-observer

variability due to subjectivity in visual inspections. Moreover,

current guidelines for FHR evaluation have been criticized

for simplistic interpretation and held responsible for defensive

practices as well as unnecessary operative interventions [3].

To combat these problems, various automated FHR analysis

and evaluation approaches have been proposed since 1980s.

They are inherently objective and have the ability to extract

features and discovery patterns that cannot be seen by naked

human eyes. For example, in [4], the authors developed meth-

ods that are based on generative models (GMs) and Bayesian

theory for FHR classification, where two categories, healthy

and unhealthy, are defined using umbilical cord pH values

which is the gold-standard for diagnosis. The results have

shown that GMs and the Bayesian paradigm can significantly

improve automatic FHR classification. Recently, the use of

hierarchical Dirichlet process (HDP) mixture models in FHR

analysis has been proposed [5], and the results of FHR

classification are very promising. There are also methods with

good results that have adopted artificial neural networks [6],

[7]. Although the literature on this topic has been mainly

concentrated on FHR, it is not the only available source of

information about fetal well-being. Other intrapartum signals,

the UA and MHR, also contain information about fetal status.

In sampling of FHR, various reasons, such as fetal or

maternal movements and misplaced electrodes, can cause

missing samples and distortions. For external ultrasound mea-

surements, the percentage of missing samples varies from 0-

40%, and for internal direct fetal ECG measurement such

percentage varies from 0-10%. We should notice that there

are still no guidelines on what percentage of missing samples

will disqualify an FHR recording from visual inspection or

from automatic analysis, although an empirical value given

by clinicians, for visual inspection, is 50%. One can argue

that clinicians can tolerate such high percentages of missing

samples in FHR because i) their inspections, unlike automated

systems, are mainly focused on morphological features and ii)

the human visual perception is very robust to loss of samples.

In the suppression of distortions in automated FHR analysis,

the first step is usually pre-processing, which aims at improv-

ing the quality of FHR recordings. This often involves artifacts

removal (a popular algorithm is described in [8]), interpola-

tion, and gap treatments. More specifically, in practice, small

segments of missing samples are interpolated using linear or

cubic spline interpolation, while bigger segments, for example,

segments of duration of 15 seconds or more, are often entirely

removed. [9].

Features that describe different characteristics of FHR and

that carry information about fetal well-being are then extracted

from pre-processed FHR recordings. To that end, for instance,

one employs short term variability (STV), long term variability

(LTV) and entropy. The pre-processing step is essential in

FHR analysis because the quality of the pre-processing is

directly related to the values of the features, and therefore,

the performance of the analysis [10]. For instance, in [11],

the authors investigated the stability of several STV and LTV

features when 0-50% missing samples were randomly selected

in a 5-minute FHR segment within the first stage of labor.

These missing samples were then linearly interpolated before

computing the features. The results indicated that the values of

many features have changed considerably. The conclusion is
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that missing samples, if not properly recovered or addressed,

may cause serious problems in the automated analysis.

The recovery of missing FHR samples is a topic that has

been largely overlooked in the literature on FHR analysis.

Only recently, an adaptive method that includes two steps

for this purpose was introduced [12]. During the first step,

missing samples are estimated using an empirical dictionary,

and in the second step, the dictionary is re-constructed using

the updated data from the first step. These two steps are

applied iteratively until convergence. This adaptive method has

achieved 2 to 4.5 dB better reconstruction ability compared

to the cubic spline interpolation. However, in many other

communities such as image processing, machine learning and

geo-statistics, recovery of missing data has been extensively

explored. In geo-statistics, which is widely used in mining

of mineral resources, a common task is to estimate grades

and other parameters from a relatively small set of borehole

or other samples. A powerful and effective approach for this

task is kriging. This method has been developed and applied

to many other fields including machine learning, where it is

known as Gaussian process (GP) prediction [13].

In this paper, we propose an effective GP–based approach,

that not only uses information in observed FHR samples but

also relies on UA signals for the recovery of missing FHR

samples. Although the MHR can also be easily incorporated,

we have not used it because the database for our experiments

(described in [14]) does not have it. If a missing FHR sample

is located far away (in time) from the observed FHR samples

in a recording, such observed samples contain very limited

information about that missing sample. However, its nearby

UA and MHR samples may contain valuable information about

its true value. For each missing FHR sample, a full predictive

Gaussian distribution of the missing sample is provided. This

offers more insight than a simple point estimate and an error

bar.

The paper is organized as follows. In the next section,

we provide a brief background on data acquisition and GPs.

In Section 3, we present our GP–based method in details.

In the following section, we first describe the open access

intrapartum CTG database we used for our experiments, then

we show how we implement our GP-based method on a

segment of real FHR recording and finally, we compare its

performance with that of the cubic spline interpolation. Then

we conclude the paper with some final remarks in Section 5.

II. BACKGROUND

A. Data Acquisition

Electronic Fetal Monitoring (EFM) is predominantly uti-

lized for assessing fetal status immediately preceding or

during labor through the use of CTG, which monitors FHR

and UA simultaneously. Changes in FHR is recorded via

Doppler ultrasound (external) or direct fetal ECG measurement

(internal) with a fetal scalp electrode, and UA is usually

monitored externally with a tocodynamometer. External CTG

is more popular since it is non-invasive and is very suitable

for continuous or intermittent monitoring. However, it usually

0 2000 4000 6000 8000 10000 12000 14000

time[samples]
0

50

100

150

200

FH
R

[B
PM

]

FHR

0 2000 4000 6000 8000 10000 12000 14000

time[samples]
0

20

40

60

80

100

U
A[

m
m

H
g]

UA

Fig. 1. A segment of un-preprocessed (raw) FHR and the corresponding UA.

provides less accurate and/or missing measurements [15]. An

example of this is given by Fig. 1, where many missing

samples are presented in FHR.

B. Gaussian Processes

Gaussian processes have been successful in both supervised

and unsupervised machine learning tasks. Here we focus on

the regression framework of GPs since recovery of missing

FHR samples is indeed a regression problem. A GP, by defi-

nition, is a collection of random variables with a joint Gaussian

distribution. A GP extends a multivariate Gaussian distribution

to infinite dimensionality, and therefore, can be seen as the

distribution of a real-valued function f(x), where the location

index x is generally a vector. For every fixed x, f(x) is a real-

valued random vector. The infinite dimensionality is, in fact,

easy to work with, because of the consistency (also known

as marginalization property) and computational tractability

offered by GPs.

A Gaussian distribution can be fully characterized by its

mean and variance. Similarly, a Gaussian process is com-

pletely specified by its mean function m(x) and covariance

function kf (xi,xi), which are defined as

m(x) = E[f(x)], (1)

and

kf (xi,xj) = E[(f(xi)−m(xi))(f(xj)−m(xj))]. (2)

The prior distribution of f(x) is constructed through kf ,

in which the covariance of two random variables, f(xi)
and f(xj), depends on their locations, xi and xj . Usually

the mean of a GP is assumed to be zero for simplicity, that

is, m(x) = 0 for every x. The design of appropriate covariance

functions is the key to a successful use of GPs because they

carry our beliefs about the characteristics of f(x).
One of the widely-used covariance functions is the squared

exponential covariance function, which for the 1-D case has

the following form:

kSE(xi, xj) = exp(−1

l
(xi − xj)

2
), (3)
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Fig. 2. Two function samples from GP priors constructed by squared
exponential (upper) and Matern (bottom, ν = 3/2) covariance functions,
respectively, with the same length-scale of l = 0.1.

where the length-scale l > 0 is its hyper-parameter. Because

squared exponential covariance functions are infinitely differ-

entiable, the resulting GPs have mean square derivatives of all

orders and therefore are very smooth, as illustrated in Fig. 2.

Another class of popular covariance functions in the ma-

chine learning community is known as Matérn class of func-

tions. One parameter that defines them is known as ν, and

it can be shown that, when ν is half integer, the Matérn co-

variance functions become simply a product of an exponential

and a polynomial. The 1-D form corresponding to ν = 3/2
and ν = 5/2 are as follows:

kν=3/2(r) =
(
1 +

√
3r/l

)
exp

(
−
√
3r/l

)
, (4)

and

kν=5/2(r) =
(
1 +

√
5r/l + 5r2/(3l2)

)
exp

(
−
√
5r/l

)
,

(5)

where r is the distance between xi and xj . To illustrate the

different characteristics of the resulting functions, in Fig. 2, we

present two functions generated by a GP prior with a squared

exponential covariance function and a GP with a Matérn (ν =
3/2) covariance function, both with the same length-scale l =
0.1. More information on GPs can be found in [13].

III. MODEL DESCRIPTION

We assume that the observed value of the ith sample yi in

an FHR segment is a function of i and its synchronized UA

sample, ui, with additive Gaussian white noise, i.e.,

yi = y(xi) = f(xi) + ε, (6)

where xi = [i, ui]
′ is a 2-D vector, f(xi) is a latent variable,

and ε ∼ N (0, σ2) is Gaussian white noise. We observe a

segment of an FHR recording of length L with n observed

samples, and we assume that it is synchronized with a UA

segment which does not have missing samples and artifacts,

and we want to use it to perform training. Our goal is that after

training we are able to estimate the missing FHR samples. For

simplicity, we also use a zero mean function, m(x) = 0.

As shown in Fig. 1, FHR signals can be seen as a super-

position of a slow varying component and a rapid varying

component. Therefore, we construct our covariance function

(for f(x)) as a summation of a squared exponential covariance

function, a Matérn covariance function (when ν = 3/2) and a

linear covariance function (for capturing linearity). It is defined

as follows:

kf (xi,xj) = α1
2
[
1 +

√
3[(xi − xj)

′Λ1(xi − xj)]
1
2

]

× exp
[
−
√
3[(xi − xj)

′Λ1(xi − xj)]
1
2

]

+α2
2 exp

[
−1

2
[(xi − xj)

′Λ2(xi − xj)]
1
2

]

+ [(xi)
′Λ3(xj)] ,

(7)

where Λ1 =

(
β1 0
0 β2

)
, Λ2 =

(
β3 0
0 β4

)
and Λ3 =(

β5 0
0 β6

)
.

Since we assume the existence of additive white Gaussian

noise with variance of σ2 in the observations, the covariance

function of y(x) becomes

ky(xi,xj) = kf (xi,xj) + σ2δij , (8)

or its equivalent matrix form is given by

K = cov(y) = Kf + σ2I, (9)

where y = [y1, y2, · · · , yn]�, K and Kf are covariance

matrices of size n, and δij is the Kronecker delta function.

The entries of Kf are specified by (7), and the entries of K
by (8).

The hyper-parameter θ = [α1, α2, β1, · · · , β6, σ]
′ can be

learned from the training data using maximum marginal like-

lihood. It can be shown that the partial derivatives of the

marginal likelihood w.r.t. θj have the following form:

∂ log p(y|X,θ)

∂θj
=

yTK−1 ∂K
∂θj

K−1y − tr
(
K−1 ∂K

∂θj

)
2

,

(10)

where X = [x1,x2, · · · ,xn]. The vector θ can be tuned by

adopting a gradient based optimizer.

For a missing FHR sample at location x∗, the mean and

covariance of f(x∗) are given by:

E(f(x∗)) = [kf (x∗,X)]
T
K−1y, (11)

and

σ2
f(x∗) = kf (x∗,x∗)− [kf (x∗,X)]

T
K−1kf (x∗,X), (12)

where kf (x∗,X) = [kf (x∗,x1), kf (x∗,x2), · · · , kf (x∗,xn)]
�

is a column vector of length n whose entries are defined by

(7). We use E(f(x∗)) as the recovered FHR value at x∗ since

the mode of a Gaussian distribution is also its expectation.

The length of the FHR segment, L, needs to be selected

carefully for efficient implementation. This length should not

be very long, since FHR samples that precede long time before

or come much later after an unobserved sample do not contain
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Fig. 3. FHR segment (upper) and its correponding UA segment (bottom) that
are adopted for our experiments.

much information about the sample. On the other hand, if the

segment is too short, we may not have enough information to

recover the missing samples. One reasonable way to choose

L is to refer to the corresponding UA signal. The patterns in

the UA signal have quasi-periodic characteristics, and a major

contraction approximately takes about 1.5 to 2.0 minutes.

Typically, the FHR and UA are sampled with a frequency of

4 Hz, and therefore, such segments have 360 to 480 samples.

Long FHR segments can also be accommodated. We can

buffer them into overlapped short frames and then implement

recovery within the frames. Then the final recovered value of a

sample is obtained from all the estimated values of the sample.

IV. EXPERIMENTS AND RESULTS

A. Open Access Intrapartum CTG Database

In our experiments, we used an open access database

which contains 552 intrapartum CTG recordings (506 vaginal

deliveries and 46 cesarean sections) and corresponding clinical

data. The data were acquired between April 2010 and August

2012 at the obstetrics ward of the University Hospital in Brno,

Czech Republic. Each CTG recording contains FHR and UA,

both sampled at 4 Hz. Most of the recordingswere externally

obtained using ultrasound. If a signal was recorded via an

internal scalp electrode, it also contained T/QRS ratio and

information about the biphasic T-wave. There are 552 record-

ings, and they were carefully selected from 9,164 recordings

using many clinical and technical criteria, for instance, a

maximum of 60 minutes for the first stage labor, a maximum

of 30 minutes for the second stage labor. No more than 50%

of a signal was allowed to be missing in the first stage labor.

A detailed description of the database can be found in [14].

B. Test on Real Data

In this example, we selected a CTG segment that contained

491 consecutive samples without missing samples and obvious

artifacts, as shown in Fig. 3. Then, 120 samples of the FHR

signal were randomly selected and considered missing (their

values were set to zero), and we tried to recovery them.

The results from the GP–based method and the cubic spline
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Fig. 4. Recovery results for the 120 missing samples of GPs-based method
and cubic spline interpolation.

interpolation are shown in Fig. 4. Clearly, the GP–based

method provided better results. Its recovery results are much

closer to the ground truth, especially at time instants where

the ground truth undergoes rapid changes.

C. Benchmark Results

The metrics for measuring the recovery performance was

the mean squared error (MSE) in logarithmic scale and the

signal-to-noise ratio (SNR), which are defined by

Log of MSE = loge(‖s− ŝ‖2 /N), (13)

and

SNR = 10 log10(‖s‖2 /‖s− ŝ‖2), (14)

where N is the number of missing samples, s is ground truth

and ŝ is reconstructed signal.

From the same CTG segment in the previous example,

we selected a percentage of FHR samples to be considered

missing (their corresponding UA values were observed). We

drew the samples uniformly and then tried to estimate them.

The percentage of missing samples was increased from 1%

to 85% with a step size of 1%. In order to get a reliable

benchmark of performance, for each specific percentage, the

experiment was repeated 90 times, and both metrics were

averaged over the 90 experiments. The benchmark results are

shown in Fig. 5, where the performance of the cubic spline

interpolation was included for reference.

The improved performance of our method was confirmed

with both metrics. Our GP-based method achieved 2.35 dB to

14.85 dB better recovery performance compared to the cubic

spline interpolation. Even when the percentage of missing

samples was more than 50%, the MSE of our approach was

still below one beat per minute.

D. Benefits of utilizing UA

To demonstrate the contribution of the UA signal in the

recovery, we repeated the first example, but excluded ui

from the input vector xi, and applied the same covariance

function (we reduced it from 2-D to 1-D). Then for both

cases, with and without the UA signal, and for every time
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Fig. 6. Estimates of missing values with confidence intervals when UA is
utilized (upper plot) and when UA is not utilized (bottom plot).

instant (from 1 to 491), we plotted the estimated values

of the latent variables f(x) and f(x), along with the 95%

confidence intervals as shown in Fig. 6. The shaded area

(which corresponds to the 95% confidence interval) with the

use of UA is much narrower. This indicates that with the

UA signal the model can better explain the training data

and predict much more confidently. The comparison of the

performance is given in Table I. From the results, we see

that without the UA signal the performance has deteriorated

noticeably. We also note that the method continued to do better

than the cubic spline interpolation.

TABLE I
COMPARISONS OF PERFORMANCE

Recovery method MSE[BPM] SNR[dB]
GP-based method, with UA 0.3311 47.1805
GP-based method, without UA 1.3572 41.0835
Cubic spline interpolation 3.5031 36.9352

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a GP–based method that em-

ploys other intrapartum signals for recovery of FHR samples.

According to test results on real CTG data, this method

offers more accurate and reliable results than the cubic spline

interpolation which is widely applied in pre-processing of

FHR signals. Even with high percentage of missing samples,

the recovery results are very good. Our work also provided

evidence that UA signals contain information about fetal well-

being. It is reasonable to believe that incorporating MHR

signals will further improve the recovery performance of our

approach. Our future work includes addressing settings where

the UA signal itself has missing values.
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