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Abstract—A new and robust method for low rank Canonical
Polyadic (CP) decomposition of tensors is introduced in this
paper. The proposed method imposes the Group Sparsity of the
coefficients of each Loading (GSL) matrix under orthonormal
subspace. By this way, the low rank CP decomposition problem is
solved without any knowledge of the true rank and without using
any nuclear norm regularization term, which generally leads
to computationally prohibitive iterative optimization for large-
scale data. Our GSL-CP technique can be then implemented
using only an upper bound of the rank. It is compared in terms
of performance with classical methods, which require to know
exactly the rank of the tensor. Numerical simulated experiments
with noisy tensors and results on fluorescence data show the
advantages of the proposed GSL-CP method in comparison with
classical algorithms.

I. INTRODUCTION

The development of multi-way array decomposition meth-
ods always attracts the attention in numerous domains. The
low rank Canonical Polyadic model is the most famous one
[1]. It is widely used in signal processing [2] [3], image
processing [4] and brain source imaging [5] [6]. Since a few
decades and Harshman’s pioneer work [7], many algorithms
have been proposed to compute the CP decomposition. Among
them, the Alternating Least Squares (ALS) method, simulta-
neously introduced by Carroll and Chang [8] and Harshman
[7], is the most famous one. Several modifications have been
proposed in order to improve its behavior, especially in the
presence of bottlenecks [9]. For instance, Enhanced Line
Search (ELS) procedures, based on a sophisticated extrapo-
lation scheme, using information on nonlinear trends in the
parameters, was designed [10] [11]. Despite the practical good
results of the ELS-ALS technique, no global minimization
of the used data-fit objective function is guaranteed. More
recently, a semi-algebraic method, namely the DIrect AlGo-
rithm for CP decomposition (DIAG), has been proposed [12].
Instead of minimizing the ALS data-fit objective function,
it formulates the CP decomposition as a Joint EigenValue
Decomposition (JEVD) problem [13], followed by rank-1
tensor approximations.

The aforementioned methods require that the rank has been
estimated in a preprocessing step. Unfortunately, learning the
exact rank of the tensor can be difficult in some particular
cases, such as for low Signal-to-Noise Ratio (SNR) values.
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Thus, the rank of the tensor could be added to the objective
function to be minimized in order to fit the CP model with
the lowest rank. Nevertheless, since the rank of a multi-way
array is discrete, rank minimization problems are usually hard
to solve and sometimes NP hard. Then researchers usually
replace rank in the objective function with nuclear norm [14].
It corresponds to the sum of singular values, which can be
used as convex envelope of the rank function [15]. However,
iterative nuclear norm minimization can not obtain the group
sparse result of objective matrix.

In this paper, we propose a new method to achieve efficient
low rank CP decomposition. We use a rank measure proposed
by Shu et al. [16] for low rank matrices. This rank measure is
lower bounded by nuclear norm and it has the same global
minimum as the latter [16]. Based on it, we reformulate
the low rank CP decomposition problem by imposing Group
Sparsity on the coefficients of each Loading matrix (GSL)
under orthonormal subspace. This allows us to solve the low
rank CP decomposition problem without any knowledge of
the true rank. Numerical simulated experiments with noisy
tensors and results on fluorescence data show the advantages
of the proposed GSL-CP method in comparison with classical
algorithms such as ALS [7], ELS-ALS [10] and DIAG [12].
In particular, a series of experiments including amino acids
fluorescence data [1] show that GSL-CP gives good results
when only an upper bound of the rank is used for initialization.
Although the concept of the GSL-CP approach is presented
with third order tensors, the proposed method can be easily
generalized to higher orders.

The paper is organized as follows. Section II gives some no-
tations and recalls some definitions. In Section III, we present
the GSL-CP algorithm and give its numerical complexity.
Numerical simulated experiments are reported in Section IV.
Conclusion is drawn in the fifth section.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, we denote multi-way arrays by a
bold calligraphic letter, e.g., \A. A matrix is denoted by a bold
capital letter, e.g., A, vectors are denoted by bold lowercase
letters, e.g., a and scalars are denoted by lowercase letters, e.g.,
a. ® and ® denote Khatri-Rao product and Kronecker product,
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respectively. The mode-i unfolding matrix of the tensor A is
denoted by A(Y). The inner product of X and ), assuming
that both tensors have the same dimensions, is defined as:

I, I Iy
ZE E g Liyig-in Yivig--in

i1=1 ip=2 in=1

Rll ><12><---><IN XRIIXIQX.“

with (X,Y) € *IN  The Frobenius
norm of X € RItxf2x=XIn i defined by:
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Given a matrix X € R™*", the symbol X; . denotes the ith
row of X. The vectorization of X is denoted by vec(X) €
R™"*1 The nuclear norm and and the mixed-norm of X are
denoted by ||X]||. and ||X]|2,1, respectively, with:

X2 =) ([ D (X
i=1

j=1
where T'r[.] is the trace operator and ® is a diagonal matrix
with ®;; = 1/4/>°7 (X ;)? standing for the (i,7)-th
component of ®. Note that since the denominator may be
equal to or close to zero, it is necessary to add a small value
g, leading to @;; = 1/(,/>7_; (Xi ;)2 +¢).

= Tr[X"®X]

j=1
III. THE GSL-CP METHOD

The rank-R CP decomposition of a three-way array T €
RN1xN2xNs g given by:

R
T=A+B=) fVofPof® 1B (1)

r=1

where B € RN XN2xNs g g noise three-way array. Let

FO = ¢Vt D, FO = 12 ) and FO) =
[fl(g), oo f 1(;? )] be the loading matrices of the three-way array

A. Then A = FO (FC) o FO)T, A?) = FO (FO) o
FM)" and A®) = FG) (F?) o FU)T will denote the three
unfolding matrices of A. Without any loss of generality, we
will assume in the sequel that N; < Ny < Nj. Since we deal
with low rank tensors, we can assume that R < Nj.

A. Problem formulation

One distinctive characteristic of our low rank CP decom-
position method is to impose the low rank constraint on the
loading matrices F(V) directly. So the objective function that
we propose to minimize in this paper is given by:

3

min E rank(F®) st
F() F(2) FO)
1=

According to [17, theorem 1], the nuclear norm ||X||. can be
treated as convex envelope of rank(X). However, it cannot

T=A+B (2

avoid the use of the nuclear norm using the following results
[16]:

Lemma 1: Consider a thin matrix A € R™*"™ (i.e. m > n),
its SVD and orthonormal subspace decomposition are de-
noted by A = USVT and A = Daq, respectively, where
D e R™" a € R"™™ and D™D = 1I,, without any loss of
generality. The minima of the row-0 and row-1 group sparsity
measures of A with respect to o such that A = Da and
D'D =1, are given by rank(A) and ||A||., respectively.

Note that the row-0 norm of « is the number of non-zero rows
of a while the row-1 norm of « is defined as the mixed-norm
of a, i.e. ||atf|row—1 = ||t]|2,1 and the relationship between D
and U is constructed by a rotation matrix €2, i.e. D = UQ.

Proposition 1: Let F € R™*"™ with m > n be a rank-R
matrix, then we have the following inequality:

IDD'F|. < |[D'Fl|2,1 3)

where D € R™*" is a random orthonormal basis.

Proof. The proof of proposition 1 is straightforward. Indeed,
from lemma 1, we can easily conclude that |||z, is greater
than ||A||.. If we replace a and A by D”F and DD'F,
respectively, then we obtain equation (3).

Note that if » = m, then we have DD" = I and proposition
1 means ||F|. < ||D"F||2,1. Furthermore, when D is the
identity matrix, inequality (3) becomes ||F||, < ||F||2,1. Based
on lemma 1 and proposition 1, it is then possible to minimize
the nuclear norm by minimizing the mixed-norm, which will
ensure the low rank property. This will also ensure group
sparsity along the row direction due to the definition of the
mixed-norm. The minimization problem defined by equation
(2) is then be reformulated as follows:

F, F(z) F3) 4 Z HD(Z F(z ||2 1 st. T=A+B @)

where the D(*) matrices are square random orthonormal bases.

B. Optimization scheme

Let’s begin by writing the augmented Lagrangian objective
function derived from (4):

3
— Z ,\Z,TT[(D(z‘)TF(z‘))Tq,(i)(Du)TF(z‘))]
i=1

P T - A+ ST - Al )

where \; are penalty parameters and Y is the multiplier tensor.
Then the function £ is minimized using the method described
in [18], derived from the alternating direction method of
multipliers [19]. More particularly, at the (k 4 1)-th iteration

of the method, FE k)+1) is computed by vanishing the gradient

of £ with respect to F
oL

L{FDLY)

=2\ DOeOPDM FD) L uF(l)(F(?’) ©F@)(FG)

guarantee simultaneously the low rank and the sparsity of X oFV
if the latter matrix enjoys both properties. So, let’s see how to ~ ® F(?)) — (Y(l) + uT(l))(F(S) OF?)=0 (6)
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Now, equation AX + XB = C implies (see Lyapunov

equation):
vee(X) = (I® A +B"® 1) 'vec(C) (7)
Consequently, we obtain:

€5
Vec(F(kH)

+u(FP o F)(FP 0 FP)] @ 1) B
vee((Y() + W) (P 0 FY))  ®)

)= (12 2uDWe"DO)

(2)

The vectors vec(F ) and vec(FEi)H)) can be computed

o (k+1)
similarly:
vee(F(},,)) = (1@ (22:D@ @D’

-1
+u (PP 0 FRL )T (FY 0 FR )] 01)
veo( (Y +wT@) (FP 0 FR,, ) ©
and:

(3)
vec(F(kH)

-1
+un (P O F Q) (Fiy ) O FG )] @ I)
veo (Y +wT®) (B, 0 F,,))) (10)

(k+1
Regarding the update of the multiplier tensor, the rule is given
by:

)= (1 2:DP @) D)

Vir1) = Vi +un(T — Ageyr)) an

In this paper, the orthonormal bases D@ for i = 1,2,3, are
fixed and choosen with identity matrix and we expect group
sparsity takes more works when the initialized rank R;,; is
more over-estimated such that \; = \/R;,;,7 = 1,2,3. The
whole implemented procedure is summarized in Algorithm 1.

C. Numerical complexity

The numerical complexity of GSL-CP is analyzed in terms
of number of floating point operations (flops). A flop includes
a multiplication and an addition. But in practice, multiplication
operation is more time-consuming than addition computing, so
we only consider the number of multiplications: this does not
affect the order of magnitude of the numerical complexity.
Note that in order to reduce the cost, we used the LDLT de-
composition to compute the matrix inverse. The computational
complexity of GSL-CP, denoted by I'ggr,, mainly depends on
the initialized rank R;,; and the size (N7 X Ny X N3) of the
tensor. It is given by:

Test = [(Nf + N3 + N3)/6)R3,; + [2(N? + NZ + N3)
+(N1N3 + N1 N3 + N3N3) + (N1 4+ N2 + N3) + 3] R;,

ini

+[AN1NoN;3 + N7 + N3 + N§ + N1Ny + N1 N3
7

+NyN3 — 6(N1 + Ny + N3)| Ripi + (N7 + N3

+Nj + N} + N3 + N3 + 2N N5 N3)
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Algorithm 1: Implementation of the GSL-CP method

Input: tensor data 7, the maximum number k,,,, of
iterations.

1 Initialization: tensor Y, loading matrices

Féz), i’g),i = 1,2, 3, tolerance value tol, parameter

p>1, ug, Umaz, A; for i =1,2,3.
2 Do
s Update F{), FG) ) FD ) Vi) using 8)-(11).
4 Update @EL)H) from the FE;)H)
5 Update u(jy1) as Upq1) = min(puk, Umaz )-
6 Update crit(jy1) as critgq1) =

T = A llr=I1T=Aw 12) /I T=Ag -
7 Update k as k: =k + 1.
8 Until crit; < tol or k < kpqq.

Output: F,(Cl), F,(f) and F;f’).

matrices.

IV. COMPUTER RESULTS

In order to study the robustness and effectiveness of GSL-
CP, we perform two kinds of experiments: the first one with
simulated noisy data and the second one with amino acids
fluorescence data [1]. Regarding the first experiment, the rank-
R tensor A € RN1xN2xNs g oenerated with random loading
matrices F() € RN:xE j = 1,2 3, whose elements follow
a Gaussian distribution. The noise tensor B is also sampled
from a Gaussian distribution. The tensor 7 is then obtained
as follows:

A n B
g
[l IBllF
where the parameter o controls the SNR defined by SNR =
—20log( (o).

The estimation accuracy is evaluated by means of the
following A measure:

T = (12)

3 R

1 ) )
A== i d (f(l),f(l) )
3 Z n=1 (n’gil)ré‘r?m ( " et

i=1

(13)

where F(*) and FS) denote the i-th true loading matrix and
the one estimated from k iterations of the GLS-CP method,
respectively, and where f,(f) and fy(fk) are the n-th column of
F® and the ny-th column of Fg). I2 is defined recursively
from I? = {1,...,3} X {1,...,Rk}, where Ry is the
estimated rank, and from 2, = I2 — J2? with:

min _ d (f(i) f(i))
[(n,ng) €]

J,QL = arg AU Y (14)
The definition of the pseudo-distance d between two vectors

is given by:
£ 821

_—— 15)
EPEE

d (f,@,f,(jg) —1-
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Fig. 1: Low rank CP decomposition with overfactoring for a
true rank equal to 5 and an SNR value of 10 dB.

A. Experiment on simulated noisy tensors

We first investigate the behavior of GSL-CP applied to
simulated low rank noisy tensors of size (100 x 100 x 100)
in comparison with ALS [7], ELS-ALS [10] and DIAG [12].
More particularly, we analyse the influence of a overestimated
rank used for initialization. All the 50 independent Monte
Carlo (MC) trials are stopped when they satisfy the conver-
gence criterion (tol = 1076 and k0, = 1000). Loading
matrices following a normal distribution are used to initialize
ALS, ELS-ALS and GSL-CP.

Figure 1 shows the A measure averaged over the 50 MC
runs at the output of the four methods as a function of the
estimated rank used to initialize them for an SNR value of 10

ISBN 978-0-9928626-7-1 © EURASIP 2017

TABLE I: Average numerical complexities with an initialized
rank of 10 and SNR=10dB.

ALS ELS-ALS DIAG GSL-CP

6.0690 x 109 | 1.3125 x 1010 | 1.5451 x 10° | 1.8315 x 101°

dB and a true rank equal to 5. It appears from figure 1 that all
the methods give good results if they use the true rank value
as initialization. While ALS and ELS-ALS give poor results
as the overestimated rank increases, DIAG and GSL-CP show
their robustness with respect to the overfactoring problem. And
the o figure gives the variance of 50 trials on A under each
initialized case. It is not hard to see that DIAG and GSL-CP
methods are more robust than others. As far the computation
complexity is concerned, table I gives the averaged numerical
complexities for an initialized rank of 10 and SNR=10dB. It is
not hard to see that when the rank is not so large, the numerical
complexities of the four methods are very similar.

B. Experiment on amino acids fluorescence data

In this experiment, we apply the GSL-CP method to
Amino acids fluorescence data, which consists of five simple
laboratory-made samples [1]. Each sample contains different
amounts of tyrosine, tryptophan and phenylalanine dissolved
in phosphate buffered water. The samples were measured
by fluorescence (excitation 240-300 nm, emission 250-450
nm, 1 nm intervals) on a PE LS50B spectrofluorometer with
excitation slit-width of 2.5 nm, an emission slit-width of 10
nm and a scan-speed of 1500 nm/s. The three-way array to be
decomposed is hence of size 5 x 61 x 201.

Figure 2 shows the emission-mode factors by using three
different initialized rank values (3, 4 and 5). The first line
shows the results of all methods for an accurate rank initial-
ization: all the methods give good results. The results of the
second line are obtained by using an initialized rank equal to
4: ALS, ELS-ALS and DIAG still have ability to find three
curves (red, pink and blue), but their cyan curve is non-zero
showing their limitation contrarily to GSL-CP. Regarding the
last line, an initialized rank equal to 5 is used: only DIAG
and GSL-CP still guarantee an accurate estimation of the three
expected emission-mode factors. But GSL-CP is the only one
to not estimate additional emission-mode factors, showing its
superiority over the three other methods.

V. CONCLUSION

In this paper, we provided a novel CP decomposition
method called GSL-CP, which estimates both the CP model
rank and the loading matrices of the tensor to be decomposed.
A less computationally prohibitive norm than the nuclear norm
is preferred, promoting group sparsity of the loading matrices
under orthonormal subspace. The GSL-CP method can then
solve the low rank CP decomposition problem without any
knowledge of the expected rank. Numerical experiments verify
the superiority of GSL-CP over classical CP decomposition
methods, especially when the overfactoring problem occurs.
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Fig. 2: Estimation of emission factors for different initialized ranks.
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