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Abstract—Training a support vector machine (SVM) on large
data sets is a computationally intensive task. In this paper, we
study the problem of selecting a subset of data for training the
SVM classifier under requirement that the loss of performance
due to training data reduction is low. A function quantifying
suitability of a selected subset is proposed, and a greedy algorithm
for solving the subset selection problem is introduced. The
algorithm is evaluated on hand digit recognition and other binary
classification tasks, and its performance is compared to stratified
sampling methods.

I. INTRODUCTION

The Support Vector Machine (SVM) is a classification
method that has gained a lot of attention due to being
theoretically well-motivated and having desirable performance
in practice. The SVM learning algorithm essentially solves
a quadratic program where the objective is to maximize the
width of the linear separation between different data classes.
When incorporating a kernel in the objective function, SVM
can solve the linear separation problem in higher dimensions.
However, SVM suffers from high running time and memory
requirements. This problem becomes particularly pronounced
as the dimensions of datasets become very large.

Motivated by the proliferation of big data applications, a
number of methods that attempt to address high computational
complexity of training SVM on large datasets has been pro-
posed in literature. These include the working set methods,
or decomposition methods [10], which iteratively break the
problem into subproblems that can then be solved analytically;
a popular algorithm in this class is the sequential minimization
algorithm (SMO) [24]. Other approaches include low-rank
approximation methods [29], [12]. However, all of the afore-
mentioned techniques become computationally intensive as the
problem size scales, thus limiting their practical feasibility.

Another approach to reducing the computational complexity
of SVM training is to search for representative subsets of data
while minimizing the loss of performance incurred by making
such selection. The problem of selecting a subset of data to
train a classifier while minimizing the performance loss due to
training set reduction is often referred to as the supervised data
selection problem [30]. This task is also known as the instance
selection [15] or prototype selection [23] problem. Among
the instance selection methods for SVM, the nearest neighbor
SVM (NNSVM) [18] algorithm attempts to select points that
are close to the boundary of the classifier by searching for
the nearest point to each point in the dataset, and removing

the points whose nearest neighbor is from the opposite class.
In sampled SVM (SSVM) [11] and reduced SVM (RSVM)
[17], random sampling methods are used to reduce the size
of the training set. The authors of [9] propose an algorithm
that performs k-means clustering and retains clusters of points
from the same class. In [5], [32], [21], the data geometry is
exploited to make use of the centroids of classes to reduce the
training set size.

On a related note, submodular maximization has recently
been used in various problems that require subset selection. In
[31], to select a subset of acoustic data for automatic speech
recognition based on a variety of phonetic or prosodic features,
a submodular objective function is maximized over the choice
of the features. In [30], submodular maximization is used for
data subset selection for two classification algorithms, Naive
Bayes and Nearest Neighbors, by maximizing the likelihood
of the entire data set under those two models trained on the
subset. In [16], the informative vector machine algorithm is
proposed to efficiently train sparse Gaussian process models.
This is made possible by greedily selecting a subset of the
training set such that the conditional entropy of the approx-
imated posterior is minimized; since the entropy measure is
shown to be submodular, the performance of greedy selection
comes with guarantees [26].

In this paper, we are interested in selecting a subset of
data to train the support vector machine (SVM) classifier.
We distinguish this problem from the data summarization of
large datasets [3], [20], which is concerned with reducing
the size of the data irrespective of the target, and from the
task of selecting a subset of features, which is encountered
in dimensionality reduction problems [30], [6], [27], [25].
In contrast to the existing work, we propose an algorithm
that can return any desired size of the subset and that takes
into account both the proximity of elements to the boundary
(using accelerated methods for nearest neighbor search) as
well as providing a diverse subset. Our scheme first performs
an approximate nearest neighbor search and then employs a
greedy algorithm to select the subset for SVM training. Due
to the submodular property of the judiciously chosen objective
function, the greedy optimization has guaranteed performance.
We show that the proposed algorithm has a relatively low
complexity (particularly, sub-quadratic in the number of sam-
ples) and demonstrate that it outperforms random sampling
methods.
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II. DATA SUBSET SELECTION

A. Problem definition

Let V = {(xi, yi)ni=1} denote a set of n training samples,
where xi ∈ Xd is a d-dimensional feature vector and yi is
the corresponding binary target. We are interested in selecting
a subset S of size t from the total set of samples V of size
n such that training the SVM algorithm using S rather than
V incurs minimal loss of performance. To this end, we focus
on the dual of the SVM objective that takes the form of the
following quadratic optimization problem,

max
α
W (α) =

n∑
i=1

αi −
n∑
i=1

n∑
j=1

yiyjαiαjk(xi, xj)

s.t. αi ≥ 0 ∀i
n∑
i=1

yiαi = 0

(1)

where xi, i = 1, ..., n, is the input vector, yi ∈ {−1, 1} is the
target variable, αi is the Lagrange variable and k(xi, xj) de-
notes the kernel function measuring the similarity between xi
and xj . If the training data is not separable in the transformed
space, then a slack variable ζi is introduced for each data point
in the primal problem and the dual problem (1) is modified
by upper bounding each αi by C, where C is the penalty
parameter associated with the sum of the slack variables in
the objective function of the primal problem.

A combinatorial search over all possible subsets of size t
would reveal the subset that provides the lowest test error but
such search is clearly impractical due to having exponential
complexity. To facilitate a computationally efficient subset
selection, we seek an appropriate function that assigns a
meaningful value to the sets and then optimize this objective
function over all subsets. Note that the optimal separating
hyperplane w∗ in the primal SVM problem that uses a linear
kernel is readily expressed as the combination of xi’s of the
form w∗ =

∑n
i=1 α

∗
i yixi, where α∗i are the optimal Lagrange

multipliers. Moreover, the classifier of an input x is expressed
as f(x) = sign(

∑n
i=1 αiyik(x, xi)). In other words, samples

corresponding to large values of αi contribute more to w∗ and
to the decision function f(x) than samples corresponding to
low values of αi. In fact, αi’s that are strictly greater than
zero correspond to the support vectors.

B. Proposed solution

From the dual problem formulation (1), we see that when-
ever two samples have targets yi and yj of opposite sign, then
high similarity between xi and xj (i.e. high value of k(xi, xj))
promotes large corresponding αi and αj (to maximize the
objective). Also, when yi and yj are of the same sign, then
high similarity between xi and xj is undesired and hence
the corresponding αi and αj are encouraged to be small.
This motivates us to define the value of a subset as being
large whenever its elements from the same class have low
similarity whereas elements from the opposite classes have

high similarity. We thus propose solving the subset selection
problem by performing the following optimization

argmax
S⊆[N ]:|S|=t

H(S) =
∑
i∈S

f(i)− γ
∑
i∈S

∑
j∈S,j 6=i

g(i, j), (2)

where f(·) is a function that computes the value of a sample
and g(·, ·) is a function that computes a notion of simi-
larity between two samples. We denote by F and G the
set functions such that F (S) =

∑
i∈S f(i) and G(S) =

γ
∑
i∈S

∑
j∈S,j 6=i g(i, j). F (S) will hence represent the rele-

vance of the subset S, and −G(S) the diversity (or coverage)
of the subset. The notion of jointly optimizing the relevance
and the coverage of a subset has been proposed in the context
of data summarization (e.g., see [19]).
The function f(·) indicates whether a sample is close to the
samples of the opposite class. More specifically, it takes on
binary values: if a sample i is close to the opposite class
samples, f(i) = 1, otherwise it is 0 (Sample i is close
to/similar to sample j if k(xi, xj) is large). Finally, the value
of function g(i, j) reflects whether two samples i and j are
relatively close to each other. We note that whenever two
samples are from opposite classes, then g(i, j) is set to zero1.

C. Locality sensitive hashing
To characterize similarities between points in a training data

set, one could in principle attempt to compute the similarity
between each pair of samples. Alternatively, to find the values
of the functions f(·) and g(·, ·) for a given sample, we may
restrict our attention to finding only the closest samples to
it and set the similarity with the remaining samples to zero.
However, the problem of finding the closest sample to a given
sample, typically referred to as the nearest neighbor problem,
is O(nd) if approached via linear search, where n denotes the
number of samples and d is the dimensionality; this implies
that finding the nearest neighbors for all samples is quadratic
in the number of samples. A remedy to such a costly search
is to find an approximate set of nearest neighbors instead of
the exact ones. Many approximate nearest neighbor search
algorithms have been proposed in literature, the most popular
being the kd-trees [4] and the locality sensitive hashing (LSH)
[14]. While kd-trees are effective and work well for low
to medium problem dimensions, their queries become near
linear at high dimensions. LSH has been shown to work well
even in high dimensional settings and is thus our method of
choice for approximate nearest neighbor search. In particular,
we use LSH to approximately find the k-nearest neighbors to
each sample. Given a distance metric (e.g. Euclidean distance
[7], inner product [28]), LSH groups similar data points with
high probability. Several methods [8], [1] are capable of
performing LSH with sublinear query time and sub-quadratic
space requirements, and the approximate nearest neighbors set
that they find is often as good as the nearest one [8].

Details of our proposed scheme are given below.
Computation of the function f(·). In order to compute

f(·), we construct 2 LSH tables; in table L01 we evaluate the

1Functions f and g will be further discussed in Section II-C)
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k-nearest neighbors, from class 0, to each sample from class
1, and in table L10 we compute the k-nearest neighbors, from
class 1, to each sample from class 0. We define function f(·)
(which assigns a value to each sample) to be binary, i.e., f(·)
assigns 1 to a sample from class yi if the sample is one of the
k-nearest neighbors to any sample from class 1− yi. In other
words, to compute the value of a sample from class yi, we
use table Lyi(1−yi) to check if the sample has been identified
as one of the k-nearest neighbors of any sample from class
1− yi.

Computation of the function g(·, ·). In order to compute
the values of g(·, ·), we construct two other LSH tables; in
table L00 we compute the k-nearest neighbors, from class 0,
to each sample from class 0, while in table L11 we compute the
k-nearest neighbors, from class 1, to each sample from class
1. Let kyjyj be the number of nearest neighbors used when
constructing Lyjyj . Given 2 samples i and j from the same
class, g(i, j) = 1/kkyjyj if j and i are k-nearest neighbors.
In all other cases g(i, j) = 0. The denominator in g(i, j)
normalizes the contribution of each additional sample j, i.e.
the quantity

∑
j∈S,j 6=i g(i, j) in Eq.2.

Choice of the parameters. The number k of nearest
neighbors for each LSH table is a hyperparameter that can
be adjusted. Let myi(V) denote the number of samples from
class yi in the set of samples V . For table Lyi(1−yi), the
number of nearest neighbors k increase with myi(V); in other
words, the number of nearest neighbors from class yi to the
samples in class 1 − yi depends on the number of samples
in class yi. As for the table Lyiyi , the number of nearest
neighbors k increases with myi(V). The hyperparameter γ in
equation (2) depends on the size t of the subset. The larger the
value of t, the larger the value of γ, since the contribution of
function −G(S) (which ensures the diversity of the subset)
increases with more data to select. γ also depends on the
data; in particular, data with lots of outliers requires larger
values of γ. This is because in the case of very noisy data,
the metric F (S) in equation (2) is uncertain and hence the
metric G(S) increases robustness of the algorithm to outliers.
Finally, the hyperparameter r represents the proportion of class
0 samples in the selected subset. We propose to set r = 0.5 so
that the selected subset S is balanced even in the case where
V is not. Setting r = 0.5 yields better performance of our
algorithm than if r = m0(V)/(m0(V) +m1(V)). Preserving
the proportions of classes can lead to a better performance than
that achieved by setting r = 0.5 for the random algorithm, as
we show in Section III.

D. Algorithm and complexity analysis
Definition (Submodularity). Let S be a finite set and 2S

denote the corresponding power set. A discrete set function
f : 2S → R is said to be submodular [13] iff

∀A,B ⊆ S, f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B). (3)

For finite set S this is equivalent to ∀A ⊆ B ⊆ S,∀j ∈ S\B,

f(A+ j)− f(A) ≥ f(B + j)− f(B), (4)

i.e., function f satisfies the diminishing return property. If
this is satisfied everywhere with equality, then the function
is called modular. Moreover, a set function f is monotone
non-decreasing if f(A) ≤ f(B),∀A ⊆ B. We say that f is
normalized if f(∅) = 0.

Let f(S) be a monotone submodular function; then opti-
mization max f(S) s.t. |S| ≤ t corresponds to maximizing a
submodular function under cardinality constraint. Even though
NP-hard, it was shown in [22] that this problem can approxi-
mately be solved by a greedy algorithm with the solution being
within (1− 1/e) of the optimal value.

Lemma 1. H(S) in problem (2) is a monotone submodular
function, and hence the solution to problem (2) via a greedy
algorithm is (1− 1/e) optimal.

Proof. The objective function in (2) is formed as a difference
of two set functions. The first, which we denoted as the value
function F (·), is a modular function. The second, denoted by
G(·), is a supermodular function. Therefore, −G(·) is submod-
ular and so is F (·)−G(·). Note that G(·) is supermodular since
∀A ⊆ B ⊆ S,∀j ∈ S\B, G(A+ j)−G(A) =

∑
i∈A g(j, i),

G(B+j)−G(B) =
∑
i∈B g(j, i), and hence G(B+j)−G(B)−

(G(A+j)−G(A)) =
∑
i∈B\A g(j, i) ≥ 0 since g is a positive

function. F (·) is modular since ∀A ⊆ B ⊆ S,∀j ∈ S\B,
F (A+ j)− F (A) = f(j) = F (B + j)− F (B).

The greedy subset selection algorithm is summarized as
Algorithm 1. To ensure the selected subset S is balanced, i.e.
that r = 0.5, line 4 of Algorithm 1 would be modified to
j ∈ V0 (j ∈ V1) whenever the number of samples from class
1 (class 0) reaches t/2, where V0(V1) is the set of samples in
V from class 0 (class 1) respectively.

Algorithm 1 Greedy subset selection algorithm for SVM
Input: The dataset V = {(xi, yi)ni=1}, subset size t, S = ∅.
Construct L00, L11, L01, L10.
while |S| < t do

for j ∈ V do
Compute δj = H(S ∪ {j}) − H(S) according to

equation (2)
i = argmaxj∈Vδj
S ← S ∪ {i}
V ← V\{i}

Analysis of complexity of the algorithm. At each step, we
choose the sample j that maximizes H(S ∪ {j}) −H(S) =
f(j) + γ

∑
i∈S g(i, j), where S is the subset obtained up to

this particular step. Computing f(j) is O(1), and computing∑
i∈S g(i, j) is O(min(|S|, kyjyj ) = O(min(t, kyjyj ), where

kyjyj is the number of nearest neighbors used when construct-
ing Lyjyj , where yj denotes the target of sample j. This holds
because g(i, j) is either 1 or 0, and so

∑
i∈S g(i, j) is the

cardinality of the intersection of the set of nearest neighbors of
j and S. Let us introduce k = max(k00, k11). The complexity
of each step of the greedy algorithm is O(nmin(t, k)), and
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hence the total complexity of the algorithm is O(ntmin(t, k)).
Note that the time to construct the LSH tables is sub-quadratic
since each query time is sublinear.

III. EXPERIMENTS
A. MNIST dataset

We test our subset selection algorithm on the MNIST
handwritten digits database, where we consider two types of
datasets: imbalanced datasets where one class is dominant, and
balanced datasets where both classes have approximately the
same number of samples. For testing the imbalanced case, we
consider the binary classification problem of the form ‘c vs
rest’ where digit c is mapped to class 1 and all others are
mapped to class 0. The training set is of size 50000 and the
test set size is 10000. In Figure 1, we show the results of
using our algorithm to select a subset to classify ‘1 vs rest’,
and compare its performance to random selection schemes.
We distinguish balanced random selection where the classes
are present at the same proportion from random selection
that chooses an equal number of samples from both class;
we refer to the latter as the equal random sampling. The
random selection algorithm results are averaged over 10 runs.
For our algorithm, we set kyiyi = 0.0025myi(V ), and for
table Lyi(1−yi) we use kyi(1−yi) = 0.005myi(V ). We employ
LSH with the Euclidean distance from the Falconn library
[2] to match the RBF kernel used for the SVM algorithm.
The factor γ is adjusted depending on the subset size – in
particular, small γ is used for a small subset and large γ
for a large subset. The intuition is that the larger the subset,
the more relevant is the coverage metric. After the subset is
selected, we run the SVM algorithm on the subset using the
RBF kernel. The penalty parameter used for training SVM
is equal to 3. The metric we use for evaluating unbalanced
datasets is the F1 score on the test data, the harmonic mean of
precision and recall. Figure 1 shows that our algorithm is able
to consistently outperform both random sampling procedures
and to achieve near-optimal F1 score using only 2% of data.
For the balanced dataset, we consider the binary classification
task where the goal is to distinguish between two digits. The
training set is hence of size 10000 and the test set is of size
2000. We consider the binary classification task of choosing
between digits 3 and 7. The evaluation metric is the test
error rate since both classes have approximately the same
number of samples. The results in Figure 2 show that the
subset selection algorithm consistently outperforms stratified
random sampling. Note that balanced random sampling and
equal random sampling essentially coincide since classes have
the same number of samples.

B. Adult dataset

We further evaluate our algorithm on the adult dataset from
the UCI machine learning repository. The target of the dataset
is a binary value which corresponds to whether a person
income is more or less than 50K. The dataset is divided
into 70% of training data (22744 samples) and 30% of test
data (9762 samples). The SVM is trained on the subsets with

Fig. 1. Performance of SVM (F1 score) in function of subset size for 1 vs
rest classification

Fig. 2. Performance of SVM (Test error rate) in function of subset size for
3 vs 7 classification

penalty parameter C = 3 while using the RBF kernel. We
evaluate our algorithm in Figure 3 on the test data using the
F1 score; note that the dataset is imbalanced. The random
selection algorithm results are averaged over 10 runs. Our
algorithm outperforms both the balanced random sampling
as well as the equal random sampling. Note that with only
4% of the training data, the proposed algorithm achieves an
F1 score very close to the one obtained by the SVM trained
using all the data. Note that in order to optimize the F1 score
of the imbalanced dataset when training the SVM using all the
data, weights inversely proportional to the class frequencies are
assigned to the samples. For imbalanced datasets, the proposed
subset selection algorithm allows us to judiciously balance the
selected subset, leading to an F1 score very close to the one
obtained when using all the data.
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Fig. 3. Performance of SVM (F1 score) in function of subset size for adult
dataset classification

IV. CONCLUSION
In conclusion, we proposed in this paper a computationally

efficient subset selection algorithm for fast SVM training on
large scale data. We verified the performance of model fitting
on the subset obtained by our algorithm, and compared it to
the optimal training based on using all the data as well as
to stratified random sampling. We showed that our algorithm
outperforms stratified random sampling methods, and achieves
in some cases near-optimal performance.
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