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Abstract—Filter bank-based multicarrier (FBMC) systems

have been considered as a prevalent candidate for replacing the

long established cyclic prefix (CP)-based orthogonal frequency

division multiplexing (CP-OFDM) in the physical layer of next

generation communications systems. In particular, offset quadra-

ture amplitude modulation (OQAM)-based FBMC has received

increasing attention due to, among other features, its potential

for maximum spectral efficiency. It suffers, however, from an

intrinsic self-interference effect, which complicates signal pro-

cessing tasks at the receiver, including synchronization, channel

estimation and equalization. In a multiple-input multiple-output

(MIMO) configuration, the multi-antenna interference has also to

be taken into account. (Semi-)blind FBMC/OQAM receivers have

been little studied so far and mainly for single-antenna systems.

The problem of joint channel estimation and data detection in

a MIMO-FBMC/OQAM system, given limited or no training

information, is studied in this paper through a tensor-based

viewpoint in the light of the success of such techniques in OFDM

applications. Simulation-based comparisons with CP-OFDM are

included, for realistic transmission models.

I. INTRODUCTION

Filter bank-based multicarrier (FBMC) systems have been

considered as a prevalent candidate for replacing the long es-

tablished orthogonal frequency division multiplexing (OFDM)

in the physical layer of next generation communications sys-

tems [6]. The potential of FBMC transmission stems from

its increased ability to carrying a flexible spectrum shaping,

along with a major increase in spectral efficiency and robust-

ness to synchronization requirements, features of fundamental

importance in the envisaged networks. A particular type of

FBMC, known as FBMC/OQAM (or OFDM/OQAM) system,

consisting of pulse shaped OFDM carrying offset quadrature

amplitude modulation (OQAM) symbols, has received increas-

ing attention due to, among other features, its potential for
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maximum spectral efficiency [18]. Notably, it allows a cyclic

prefix (CP)-free transmission while offering very good spectral

agility and time localization with very important implications

in the system design and performance [6]. It suffers, how-

ever, from an intrinsic inter-carrier/inter-symbol interference

(ICI/ISI), which complicates signal processing tasks at the

receiver, including synchronization, channel estimation and

equalization [18]. Although FBMC/OQAM research has been

rapidly advancing in the last decade or so, resulting in a

number of well performing techniques for receiver design,

(semi-)blind FBMC/OQAM methods have been very little

studied so far (e.g., [25]) and mainly for the single-antenna

case. Interestingly, (semi-)blind multiple-input multiple-output

(MIMO) techniques have been recently considered as a po-

tential solution to the pilot contamination problem in massive

MIMO FBMC-based configurations [17].

Tensor models and methods have been extensively stud-

ied for communications applications [1], including system

modeling and receiver design of single-input multiple-output

(SIMO) and MIMO systems, both in a general [20] and a

multicarrier and/or spread spectrum [5], [7], [8], [19], [22],

[27]–[29] setup (see [9] for more references). The inherent

ability of tensor models to capture the relations among the

various system’s dimensions, in a way that is unique under

mild conditions and/or constraints, has been exploited in

problems of jointly estimating synchronization parameters,

channel(s), and transmitted data symbols. Tensorial approaches

have proved their unique advantages not only in their ‘natural’

applications in (semi-) blind receivers [7] but also in the design

of training-based high performance receivers for challenging

scenarios [20], [21]. Notably, in OFDM applications [7], per-

formance close to that with perfect knowledge of the system

parameters has been achieved.

In the light of their successful application in OFDM

(semi-) blind estimation problems, tensor-based techniques

are considered here in the context of MIMO-FBMC/OQAM

systems. The problem of joint channel estimation and data

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 445



detection, given limited or no training information, is re-

visited through a tensorial approach. The main difficulties

come from the intrinsic interference effect and the lack of a

guard interval (CP), which challenge the receiver design even

under the commonly made simplifying assumption of channels

of low selectivity, also adopted in this paper. Simulations-

based comparisons with CP-OFDM are included, for realistic

transmission models.

II. SYSTEM MODEL

Consider a system based on FBMC/OQAM with NT trans-

mit and NR receive antennas. The synthesis filter bank (SFB)

output at the transmit (Tx) antenna t is given by [10]

s(t)(l) =

M−1∑

m=0

∑

n

d(t)m,ngm,n(l), (1)

where (m,n) refers to the mth subcarrier and the nth FBMC

symbol, d
(t)
m,n are real (Pulse Amplitude Modulation (PAM))

symbols, M is the (even) number of subcarriers, and

gm,n(l) = g

(

l − n
M

2

)

e
 2π
M

m
(

l−
Lg−1

2

)

eϕm,n ,

with g being the employed prototype filter impulse re-

sponse (assumed of unit energy) with length Lg, and

ϕm,n = (m + n)π2 − mnπ. Moreover, usually Lg =

KM , with K being the overlapping factor. Let H
(r,t) =

[

H
(r,t)
0 H

(r,t)
1 · · · H

(r,t)
M−1

]T

be the frequency response

of the channel from the Tx antenna t to the receive (Rx)

antenna r, assumed invariant in time. Assume, as usual, that

the noise signals at different Rx antennas are zero mean white

Gaussian with variance σ2 and uncorrelated with each other

(i.e., temporally and spatially white noise). Under the common

assumption of a (relatively to M ) low channel delay spread,

the analysis filter bank (AFB) output at the Rx antenna r and

at the (p, q) frequency-time (FT) point can be written as [10]

y(r)p,q =

NT∑

t=1

H(r,t)
p c(t)p,q + w(r)

p,q, (2)

where w
(r)
p,q denotes the corresponding noise component,

known to be also zero mean Gaussian of variance σ2 but

correlated in both time and frequency and

c(t)p,q = d(t)p,q + 
∑

(m,n)∈Ωp,q

〈g〉p,qm,nd
(t)
m,n (3)

is the “virtual” transmitted symbol (or pseudo-symbol) con-

sisting of the corresponding transmitted symbol plus the

(imaginary) interference from its first-order FT neighborhood

Ωp,q . The interference weights 〈g〉 are known to follow the

symmetry pattern [10]
(−1)pδ −β (−1)pδ

−(−1)pγ dp,q (−1)pγ
(−1)pδ β (−1)pδ

(4)

with the horizontal and vertical directions denoting time and

frequency, respectively, and the constants γ > β > δ > 0
being a-priori computable from g (cf. [10] for details).

Let each Tx antenna transmit N FBMC symbols and let

D
(t) = [d

(t)
m,n] ∈ R

M×N denote the corresponding frame

of PAM data. The corresponding AFB output at the rth Rx

antenna can then be written as the M ×N matrix

Y
(r) = [y(r)m,n] =

NT∑

t=1

diag(H(r,t))C(t) +W
(r), (5)

where C
(t) = [c

(t)
m,n] =

[

c
(t)
0 c

(t)
1 · · · c

(t)
N−1

]

∈

CM×N collects the virtual symbols for Tx antenna t and

W
(r) = [w

(r)
m,n]. One can readily see that the intrinsic inter-

ference effect as desribed in (4) can be compactly expressed

as follows

C
(t) = D

(t) + 
[

βED
(t) + S(−γD(t)

Ē + δZ̄D
(t)
Ẽ)

]

,

(6)

where S = diag(1,−1, 1,−1, . . . , 1,−1) is of order M , E is

the circulant M ×M matrix

E =










0 1 0 0 · · · 0 −1
−1 0 1 0 · · · 0 0
0 −1 0 1 · · · 0 0
...

...
. . .

. . . · · ·
. . .

...

1 0 0 · · · 0 −1 0










,

while Ē and Ẽ are similarly structured Toeplitz N × N

matrices:

Ē =










0 1 0 0 · · · 0 0
−1 0 1 0 · · · 0 0
0 −1 0 1 · · · 0 0
...

...
. . .

. . . · · ·
. . .

...

0 0 0 · · · 0 −1 0










,

Ẽ =










0 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
. . .

. . . · · ·
. . .

...

0 0 0 · · · 0 1 0










.

Letting

Z =

[
01×(M−1) 1
IM−1 0(M−1)×1

]

denote the M ×M matrix of circular downwards shifting, Z̄

can be expressed as

Z̄ = Z +Z
−1,

which is also circulant. Note that D(t) = ℜ{C(t)}.

Remarks.

1) As it is common, it is here assumed that the frame

is preceded and followed by inactive inter-frame gaps,

which can be taken as FBMC symbols of all zeros, thus

resulting in negligible interference among frames [10].

2) Although FBMC/OQAM has proved to be more robust

than CP-OFDM to imperfect frequency synchroniza-

tion [2], incorporating a carrier frequency offset (CFO)

into its signal model can be seen to be less straight-

forward [15], especially when considering a frequency-

domain model as in (5). For the sake of simplicity, and
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in order to concentrate on joint data/channel estimation,

perfect synchronization is assumed in the following.

III. JOINT CHANNEL ESTIMATION / DATA DETECTION

Stacking the NR matrices (5) in the MNR ×N matrix

Y 2 =
[

(Y (1))T (Y (2))T · · · (Y (NR))T
]T

, (7)

one can write (see also [5], [7])

Y 2 =

NT∑

t=1















(H(1,t))T

(H(2,t))T

...

(H(NR,t))T







⊙ IM








C
(t) +W 2

= (H ⊙ Γ)C +W 2, (8)

where W 2 is similarly defined, C =
[

(C(1))T (C(2))T · · · (C(NT))T
]T

,

H =








H
(1,1)

H
(2,1) · · · H

(NR,1)

H
(1,2)

H
(2,2) · · · H

(NR,2)

...
...

. . .
...

H
(1,NT)

H
(2,NT) · · · H

(NR,NT)








T

,

Γ =
[
IM IM · · · IM

]

︸ ︷︷ ︸

NT times

,

and ⊙ denotes the Khatri-Rao (columnwise Kronecker) prod-

uct [23]. If Y is the M ×N ×NR (i.e., frequency × time ×

space) tensor of received signals with entries Ym,n,r = y
(r)
m,n,

then the matrix Y 2 above results from vertically stacking its

NR frontal slices and (8) corresponds to its canonical polyadic

decomposition (CPD) (also known as PARAFAC), of rank

MNT [23]. The joint estimation problem can then be stated

(using a commonly used notation [23]) as

min
H,C

‖Y − [[Γ,CT,H ]]‖F, (9)

where ‖ · ‖F stands for the (tensor) Frobenius norm [23] and

the noise color has been ignored for the sake of simplicity.

Stacking instead (in a vertical fashion) the lateral slices of Y

yields the MN ×NR matrix

Y 3 =
[

vec(Y (1)) vec(Y (2)) · · · vec(Y (NR))
]

(10)

In view of (5) and using analogous arguments as previously,

one can write

Y 3 = (CT ⊙ Γ)HT +W 3, (11)

with W 3 constructed as in (10).

The uniqueness property of the CPD tensor decomposition,

which can be trusted to hold under mild conditions [23], can be

taken advantage of in the above setup (in a way analogous to

that followed in OFDM; see, e.g., [7] etc.) to blindly estimate

the channel matrix H and recover the virtual symbols C from

the tensor of AFB output signals, Y . However, in a multiple-

input (NT ≥ 2) system, the matrix Γ has collinear columns

and hence a k-rank of 1 [23], which implies that the identi-

fiability of the above CPD model is not guaranteed. In fact,

a quite similar formulation was presented, for MIMO-OFDM,

in [28], where identifiability was claimed to hold, however

based on a proof of questionable validity.1 A simple way to see

that the CPD in (9) does not enjoy uniqueness for NT > 1 is

the following. Stacking the horizontal slices of the tensor Y in

the NRN×M matrix Y 1 =
[

Y
(1)

Y
(2) · · · Y

(NR)
]T

results in the following alternative way of writing the CPD,

Y 1 = (H ⊙C
T)ΓT +W 1, (12)

or equivalently

Y 1 =

NT∑

t=1








(H(1,t))T

(H(2,t))T

...

(H(NR,t))T







⊙ (C(t))T +W 1 (13)

Clearly, there is no way to identify H and C from the above

(unless additional information is made available). However, in

the SIMO case, (12) yields

Y 1 = H ⊙C
T +W 1, (14)

which shows that the channel and (virtual) symbol matrices

can be determined (up to scaling ambiguity) through a Khatri-

Rao factorization (KRF) of Y 1 (e.g., [20]).2 Nevertheless,

such a solution approach fails to offer an interpretation of the

common iterative schemes of joint channel / data estimation

as outlined in Remark 1) below. On the other hand, assuming

(as in [7]) non-perfect frequency synchronization, involving

nonzero CFOs (different per Tx antenna [7] and/or user in a

multiple access scenario [22]), the corresponding factor matrix

can be assumed to be of full k-rank, which leads to the generic

condition

M +min(N,MNT) +min(NR,MNT) ≥ 2MNT + 2 (15)

In practice, where N would probably be larger than MNT,

this simplifies to NR ≥ M(NT − 1) + 2. For the SIMO

scenario, this becomes NR ≥ 2, which simply requires the

spatial dimension to be nontrivial. Using appropriate precoding

at the transmitter can result in more flexible identifiability

conditions (e.g., not requiring an excessively large number of

receive antennas) and algorithms; see, e.g., [7], [13].

A. An ALS view of the joint channel estimation / data detection

procedure

The problem in (9) can then be solved with the aid of

the classical alternating least squares (ALS) algorithm [23],

iteratively alternating between the conditional updates (cf. (8),

(11))3

C = (H ⊙ Γ)†Y 2 (16)

1Involving the inverse of the rank-deficient matrix Γ
T
Γ.

2See also Proposition 3.1 in [24], which ensures uniqueness of the CPD
when one of its factors (Γ = I

M
) is known and of full column rank.

Furthermore, applying Proposition 3.2 of [24], while making the common
assumption that N ≫ M ≫ NR, leads to the trivial requirement that
NR ≥ 1.

3The fact that one of the three factor matrices is known could justify a
characterization of the above problem as a bilinear instead of a trilinear one.
To make this explicit, such an ALS algorithm has also been known with the
name bilinear ALS (BALS) [21].
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and H =
[

(CT ⊙ Γ)†Y 3

]T

, (17)

where (·)† stands for the (left) pseudo-inverse. A necessary

condition for its existence in (17) is that there are at least

as many Rx as Tx antennas. Observe that the permutation

ambiguity is trivially resolved in this context because one

of the factor matrices, Γ, is known, similarly with [4]. A

straightforward (and common) way to address the scaling

ambiguity is through the transmission of a short training

preamble.4 At convergence, and once the complex scaling

ambiguity has been resolved, the transmitted symbols can be

detected as

D
(t) = dec(ℜ{C(t)}), t = 1, 2, . . . , NT, (18)

where dec(·) signifies the decision device for the input

constellation. However, this procedure does not exploit the

information about D found in the imaginary (interference) part

of (6) and can be seen to perform similarly or even somewhat

worse than CP-OFDM [9]. A significant performance gain can

be achieved by taking advantage of the structure of the intrinsic

interference through the inclusion of the steps (18) and (6)

between (16) and (17) in each iteration. Of course, the complex

scaling ambiguity needs to be resolved first, which can be done

by initializing ALS with the training-based estimates as in the

simulations reported in the next section.

Another important difference with the corresponding OFDM

problem is that the noise at the AFB output is colored and

hence the cost function in (9) should be modified accordingly

to a weighted LS one. Indeed the noise tensor is correlated in

two of its three dimensions (time and frequency, not space)

with corresponding covariances that can be a-priori known

and only depend on the constants β, γ, δ. Thus, appropriately

modified ALS algorithms can be employed instead (see [9] for

details). To keep the presentation simple, no noise correlation

will be considered here.

Remarks.

1) One can check that, in a SIMO system, (16) and (17)

are in fact nothing but a compact way of re-writing

the well-known equations for channel equalization,

cp,q = 1
NR

∑NR

r=1

y(r)
p,q

H
(r,1)
p

, and estimation, H
(r,1)
p =

1
N

∑N−1
q=0

y(r)
p,q

cp,q
.5 It is also of interest to note the sim-

ilarity of the above ALS procedure with the iterative

block algorithms studied in [26] for the solution of the

(bilinear) blind maximum likelihood source separation

problem, especially the so-called iterative least squares

with projection (ILSP) scheme.

2) In the present context, the identifiability (uniqueness)

question should also consider the discrete (in fact, finite)

4Alternatively ways include appropriate normalization of one of the factors
(e.g., [21]) or the transmission of a pilot sequence at one of the subcarriers
(e.g., [4], [7]).

5The latter is known as Interference Approximation Method (IAM) [10]. In
fact, it can be seen that the ALS iterations are equivalent to maximum-ratio
combining (MRC) operations [11], which may be simplified (e.g., when all
(virtual) symbols have the same magnitude) to the above (IAM) expressions
(equivalent to equal-gain combining (EGC) [11].

nature of the set of possible values of the C factor.

No such uniqueness results are known to exist for

general 3-way tensors. Nevertheless, one could consider

using arguments analogous to those followed in [26]

to show that identifiability is ensured for large enough

sets of independent, identically distributed (i.i.d.) input

symbols. Indeed, since the factors in (8) are both of

full rank, the identifiability condition of [26] applies,

whereby it suffices for N to be large enough so that C

contains all Q2M

2 distinct (up to a sign) M -vectors with

entries belonging to the Q2-QAM constellation. The

probability of non-identifiability for N ≫ Q2M

2 i.i.d.

(multicarrier) symbols is shown in [26] to approach zero

exponentially fast. For large M and/or Q, the number

of symbols required may become unrealistically large.

More practical conditions can be found in, e.g., [12],

albeit only for constant modulus (e.g., Quadrature Phase-

Shift Keying (QPSK) signals).6 See also [7] for a related

upper bound on the probability of non-identifiability for

the case of i.i.d. Binary Phase-Shift Keying (BPSK)

input. It must be noted, of course, that no such problem

was encountered in the simulations run for this work.

Moreover, it is known [14] that the imaginary part of

C in FBMC/OQAM is close to be Gaussian distributed,

providing an extra support to the use of generic rank

results that are known to hold for matrices generated by

absolutely continuous distributions [7].

IV. NUMERICAL EXAMPLES

The above approach is evaluated here in a SIMO 1× 2 sys-

tem. The input signal is organized in frames of 53 OFDM (i.e.,

N = 106 FBMC) symbols each, using QPSK modulation.

Filter banks designed as in [3] are employed, with M = 32
and K = 4. With a subcarrier spacing of 15 kHz, the (block

fading) PedA channels involved are of length Lh = 9 and

satisfy the model assumption (2) only very crudely. The results

are compared with those for a similar SIMO-OFDM system,

using a CP of M
4 = 8 samples. The results of KRF (cf. (14))

are also included. The estimation performance, in terms of

mean squared error (MSE) versus transmit signal to noise ratio

(SNR), is shown in Fig. 1(a). In the proposed approach, the

inf ormed (of the interference structure and input constellation)

iterations are initialized with estimates based on MSE-optimal

training preambles7. FBMC is seen to outperfom CP-OFDM

at low (to medium) SNR values (albeit at the cost of a slightly

larger number of iterations [9]). Moreover, as expected, jointly

estimating the channel and the data symbols brings significant

improvement over the training only-based approach (“train.”

curves). Analogous conclusions can be drawn from the bit

error rate (BER) detection performance depicted in Fig. 1(b).

Notably, the informed ALS approach is observed to yield

results quite close to those obtained when perfect channel

6Thanks to Dr. M. Sørensen, KULeuven, for pointing out this paper.
7consisting of equipowered pseudo-random pilots for CP-OFDM and the

optimal PAM preamble (IAM-R) for FBMC [10].
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Fig. 1. Performance comparison for a 1× 2 system with PedA channels: (a)
MSE (b) BER.

information (“PCI”) is available. The FBMC curves are seen

to floor at higher SNR values, resulting in performance losses

compared to CP-OFDM at such SNR regimes. This is a typical

effect of the residual intrinsic interference which comes from

the invalidation of model (2) and shows up in the absence of

strong noise [10].

V. FUTURE WORK

On-going work aims at taking non-perfect synchronization

also into account. Further extensions will include channels of

strong frequency- (not satisfying (2)) and time- (e.g., [16])

selectivity, as well as richer configurations involving precoders

and space-time/frequency coding (e.g., [13]).
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