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Abstract—Visual attention networks are so pervasive in the
human brain that eye movements carry a wealth of information
that can be exploited for many purposes. In this paper, we present
evidence that information derived from observers’ gaze can be
used to infer their age. This is the first study showing that
simple features extracted from the ordered sequence of fixations
and saccades allow us to predict the age of an observer. Eye
movements of 101 participants split into 4 age groups (adults,
6-10 year-old, 4-6 year-old and 2 year-old) were recorded while
exploring static images. The analysis of observers’ gaze provides
evidence of age-related differences in viewing patterns. Therefore,
we extract from the scanpaths several features, including fixation
durations and saccade amplitudes, and learn a direct mapping
from those features to age using Gentle AdaBoost classifiers.
Experimental results show that the proposed image-blind method
succeeds in predicting the age of the observer up to 92% of the
time. The use of predicted salience does not further improve the
classification’s accuracy.

I. INTRODUCTION

Eyes are often compared to a window into the soul. Analyz-
ing eye movements do provides a wealth of information about
our personality, the cognitive state of our mind, our emotional
state, to name a few [1], [2], [3]. Thanks to the advent of
modern eye-trackers, capturing gaze with a high spatial and
temporal resolution, a large amount of eye tracking data can
be collected with a relative simplicity. Gaze is composed of
a sequence fixations and saccades, called a visual scanpath.
Fixations aim to bring objects of interest onto the fovea, where
the visual acuity is maximum. Saccades are ballistic changes
in eye position, allowing to jump from one position to another.
Visual information extraction essentially takes place during the
fixation period. The way we look within a visual scene, the
way we jump from one location to another in order to inspect
it accurately, the way we avoid looking at unpleasant stimulus
can be diagnosis of the task at hand, our personality, our state
of mind, or whether we suffer from a neurological disease or
not [4], [5].

Amongst all the factors impacting gaze behavior, age is
probably one of the most important. At birth, the visual
system is limited but develops rapidly during the first years
of life and continues to improve through adolescence [6], [7].
As we are getting older, the function of the visual system
appears to deteriorate. Helo et al. [8] provided evidence
of age-related differences in viewing patterns during natural
scene perception. This development as well as aging influence
saccade parameters. Saccade frequency, amplitude, and mean

velocity are reduced and the velocity/amplitude distribution
as well as the velocity profile become less skewed [9], [8].
An horizontal bias is also observed whatever the age, but is
more pronounced when getting older [10]. Finally, the fixation
durations decrease with age [8].

In this paper, we investigate whether we can infer the age of
an observer only from his/her gaze data. Section II presents the
eye tracking experiment, the influence of development on eye
movements, the features that are extracted from the scanpaths
and the classification algorithm. Results are presented in
section III. Section IV concludes the paper.

II. EXPERIMENT AND METHOD

A. Experiment and influence of development

Experiment: We used the eye movement data from a total
of 101 subjects participated in the experiments, including
23 adults and 78 children. These subjects were divided into
4 groups: 2 year-old group (18 participants, M = 2.16,
SD = 0.22), 4-6 year-old group (22 participants, M = 4.2,
SD = 0.42), 6-10 year-old group (38 participants, M = 7.5,
SD = 0.57) and adults group (22 participants, M = 28,
SD = 4.48). Participants were instructed to explore 30 color
pictures taken from children’s books for 10 seconds (see
Fig. 1). They were instructed to perform a recognition test to
determine whether an image segment presented at the center of
the screen was part of the previous stimulus. Image resolution
is 1024 × 768 pixels. The pictures were displayed on a CRT
display at 1024 × 728 pixels viewed from a distance of 60
cm. Each trial consisted in a drift check followed by the
presentation of a full-screen image for 10 seconds. Fixations
shorter than 90 ms and fixations around blinks were discarded.
For all the results reported in this paper, the first fixation has
been removed (more details are available in [8]).

Eye movements were sampled monoculary at 500 Hz using
the EyeLink 1000 Remote eye tracker system (SR Research,
Ontario, Canada) with a spatial resolution below 0.01◦ and
a spatial accuracy above 0.5◦. Saccades were identified by
deflections in eye position in excess of 0.1◦, with a minimum
velocity of 30◦s−1 and a minimum acceleration of 8000◦s−2,
maintained for at least 4 ms.

Influence of aging on eye movements: We first investigate
the influence of development on fixation durations, saccade
amplitudes and central bias. Results are presented in detailed
in the supplementary materials [11], which shows that the
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Fig. 1. (a) and (d) examples of original stimulus; (b),(e) and (c),(f) represent fixation maps (red crosses indicate fixation) for 2 y.o. and adult group,
respectively.

fixation duration significantly decreases from childhood to
adulthood. The saccade amplitudes significantly increase be-
tween 2 year-old and 4-6 year-old conditions, between 4-6
year-old and 6-10 year-old conditions. There is no difference
between 6-10 year-old and adult condition. The central bias,
estimated as the mean of the Euclidean distance of fixation
to the image center, significantly increases from 4-6 year-old
to 6-10 year-old, and from 6-10 year-old to adult conditions.
We also observe significant differences concerning the saccade
duration and the saccade velocity. They significantly increase
with age (see [11]). Hence, there is a significant difference
between 2 year-old and 4-6 year-old conditions, between 4-6
year-old and 6-10 year-old conditions, between 6-10 year-old
and adult conditions. Regarding the saccade velocity, there is
not significant difference between 2 year-old and 4-6 year-
old conditions. A significant difference is however observed
between 4-6 year-old and 6-10 year-old conditions, between
6-10 year-old and adult conditions.

B. Extraction of gaze-based features
From a given scanpath, we extract its statistical properties

describing the main characteristics of the ordered sequence of
fixations and saccades. This description does not capture all
the oculomotor information contained within a scanpath, but
has to provide the best features for predicting observer’s age.
In the following, we define a fixation f as f = (x, y, ts, te).
The fixation location is given by (x, y). ts and te represent
the start and end time of the fixation, respectively. In a similar
way, we define a saccade s as being s = (xs, ys, xe, ye, ts, te),
where (xs, ys) and (xe, ye) represent the start and the end
locations, respectively.

From a given scanpath spi = {(fk, sk)}k={1,...,N} (N rep-
resents the number of fixations and saccades in the scanpath),
we compute a set of properties related to the fixation duration,
the saccade amplitude, the saccade velocity and the saccade
duration. They are defined below:
• The duration of the kth fixation fkd is the difference

between the end time tke and the start time tks ;
• The amplitude of the kth saccade ska is the Euclidean

distance between the start point
(
xk
s , y

k
s

)
and the end

point
(
xk
e , y

k
e

)
;

• The duration of the kth saccade skd is the difference
between the end time tke and the start time tks ;

• The velocity of the kth saccade skv is given by dividing
the saccade amplitude ska by the saccade duration skd .

For each of these properties, we estimate 4 features, i.e. the
median value, the mean value, the standard deviation and

the first derivative (4 × 4 features). We also compute the
average distance of the fixation points to the screen center
(i.e. called dkc for the kth fixation), the standard deviation as
well as the mean of the absolute value of the first derivative
(3 features). The latter feature allows us to capture aspects of
gaze dynamics over the viewing duration.
We also compute the covariance matrix C = AAT , where A
is a 5-by-N matrix:

A =


f0d . . . fN−1d

s0a . . . sN−1a

s0v . . . sN−1v

s0d . . . sN−1d

d0c . . . dN−1c

 (1)

The five row vectors are composed of fixation durations,
saccade amplitudes, saccade velocities, saccade durations and
distances from the screen’s center, respectively. The covariance
matrix C provides a compact and natural way for representing
the correlation among features (15 features). Finally, we com-
pute the histogram of saccade slopes. The slope is the angle
between the saccade direction and the horizontal line. We use
36 bins (36 features), each representing 10 degrees.

Overall, we have 70 features (4×4+3+15+36) extracted
for 2686 scanpaths distributed as follows: 12.4% for 2 y.o.,
23.01% for 4-6 y.o., 41.14% for 6-10 y.o. and 23.45% for
adults.

C. Classification algorithm

To investigate a non-linear mapping of scanpath-based
features to age, we use multi-class Gentle AdaBoost algo-
rithm [12]. The strategy of adaptive boosting is to learn several
weak classifiers that perform slightly better than chance. But as
an ensemble, the combination of these weak classifiers usually
provides a strong classifier with much better performance.
We have implemented a classification tree as a weak learner.
To get a relevant classification model, we followed a 10-fold
cross validation approach consisting in partitioning the data set
into training and testing sets. By default, the number of weak
classifiers is set to 60. Results are presented with confusion
matrices [13] as illustrated by Fig. 2. Green and red boxes
correspond to correct and wrong classifications respectively. In
each box, the number and the percentage representing either
correct or incorrect classifications are given. The gray boxes
provide the correct and wrong predictions per class. Finally,
the overall correct and wrong predictions are given in the
bottom-right blue box.
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Fig. 2. Confusion matrix for the classification. (A) and (B) binary classifications between 2 y.o. and adult groups, and between children (< 10y.o.) and
adult (> 10y.o.) groups. (C) is the four-class classification. Green and red boxes shows the number and percentage of correct classifications. The grey boxes
provide the correct and wrong predictions per class. The overall correct and wrong predictions are given in the bottom-right blue boxes.

III. RESULTS

A. Binary classification

In this first experiment, we evaluate the extent to which
two age groups can be correctly identified. First, we consider
a binary classifier composed of two classes: 2 year-old versus
adult groups. Overall, 93.4% of the predictions are correct and
6.6% are wrong classifications (see Fig. 2 A). 35 adult scan-
paths are incorrectly classified as 2 y.o., which corresponds to
3.6% of all 963 scanpaths in the data. 29 children scanpaths are
also incorrectly classified, and this corresponds to 8.7% of all
scanpaths. 94.4% (resp. 91.3%) of adult (resp. 2 y.o.) observers
are correctly classified. Performances are clearly above chance
(34% for children and 65% for adults). These promising
results suggest that simple gaze-features are sufficient for
getting a relevant 2 year-old versus adult classification. Table I
presents the classifier performance when considering a subset
of the 70 features. The best performances are observed when
considering all features. However, we observe that a small
number of simple gaze-based feature are sufficient to classify
2 y.o. children and adults with a good accuracy level. We
also report in this table the Bookmaker Informedness [14]
which specifies the extent to which the prediction is informed
versus chance. The benefit of using Informedness is that
it is influenced neither by class distribution nor population
prevalence. Its value is between -1 and +1: +1 represents
perfectly correct performance, while -1 indicates an incorrect
response and 0 is the chance level.

A second test consists in considering children (i.e. partic-
ipants younger than 10 y.o.) and adult (i.e. older than 10
y.o.) groups. Overall, 75.6% of the predictions are correct
and 24.4% are wrong classifications (see Fig. 2 B). The
classification performance is still significantly above chance
for adults (23%) and slightly lower for children (76%). This
result could be explained by the fact that the children group
is composed of 2 y.o., 4-6 y.o. and 6-10 y.o. groups. Because
of the quick maturation of the visual system, the difference
between 6-10 y.o. and adult groups becomes small and subtle

TABLE I
ACCURACY AND INFORMEDNESS OF THE BINARY CLASSIFICATION (2 Y.O.

VS ADULT GROUPS AND CHILDREN (< 10 Y.O.) VS ADULT GROUPS) IN
FUNCTION OF A SUBSET OF THE 70 CHOSEN FEATURES: S1=MEDIAN,

AVERAGE, STANDARD DEVIATION AND GRADIENT OF FIXATION
DURATIONS; S2=SIMILAR TO S1 BUT FOR SACCADE AMPLITUDES;

S3=SIMILAR TO S1 BUT FOR SACCADE VELOCITIES; S4=SIMILAR TO S1
BUT FOR SACCADE DURATIONS; S5=COVARIANCE MATRIX C;

S6=SIMILAR TO S1 BUT FOR DISTANCE FROM CENTER.

All S1 S2 S3 S4 S5 S6
2 y.o. vs adults
Accuracy (%) 93.4 86.1 80.1 78.4 80.4 83.1 81.6
Informedness 0.84 0.68 0.55 0.52 0.56 0.62 0.59
< 10 y.o. vs adults
Accuracy (%) 75.9 64.1 62.2 64.8 66.3 68.5 65.5
Informedness 0.38 0.24 0.20 0.24 0.24 0.26 0.24

to determine. This explanation is supported by observations
presented in section II-A; these observations indeed show a
convergence of visual strategy when aging.

B. Multi-class classification

The multiclass problem is performed with the one-vs-all
strategy. The four groups, namely 2 y.o., 4-6 y.o., 6-10 y.o.
and adults, are considered. Overall, 52.2% of the predictions
are correct (see Fig. 2 C). We observe that the classification
performance varies a lot from one class to another. 71.5% of 2
y.o. scanpaths and 67.3% of adult scanpaths are correctly clas-
sified. The accuracy of the classification decreases to 46.1%
and 41.2% for the 4-6 y.o. and 6-10 y.o. groups, respectively.
These performances, although lower than those observed for 2
y.o. and adult groups, are above the chance-level; the chance-
level of a given class is given by the proportion of scanpaths
belonging to this class (see end of section II-A). We also
observe that the incorrectly classified scanpaths are not evenly
distributed over output classes. Most of them are classified
into adjacent classes. For instance, for 2 y.o. class, the input
scanpaths are classified as being either a 2 y.o. scanpaths in
71.5% of cases, a 4-6 y.o. scanpaths in 19% of cases, a 6-10
y.o. scanpaths in 7% of cases or an adult scanpath in 1% of
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Fig. 3. Influence of the number of fixations on the 4-class classification. (A) first 6, (B) first 9, (C) first 12 and (D) first 15 fixations.

cases. For adults, the input scanpaths are classified as being
either a 2 y.o. scanpaths in 3% of cases, a 4-6 y.o. scanpaths
in 10% of cases, a 6-10 y.o. scanpaths in 19% of cases or an
adult scanpath in 67.3% of cases. For the 4-6 y.o. and the 6-
10 y.o. groups, the incorrectly classified scanpaths spread over
the 2 y.o. (18%) and 6-10 y.o. (23%) classes, and over the 4-6
y.o. (23%) and adults (28%) classes, respectively. Increasing
or decreasing the number of weak classifiers reduces the
classification accuracy.

Results in Fig. 2 A and C show that the classification is
more accurate with greater between-group age difference. As
previously mentioned, this might be due to the developmental
course of the principal oculomotor functions. Indeed, oculo-
motor functions develop rapidly during the first year of life
and continue to develop during childhood with a relatively
slow and gradual progression near to 10 years of age or even
later [6]. It is therefore much more demanding to make the
difference between 6-10 y.o. and adult scanpaths than between
2 y.o. and 6-10 y.o. scanpaths.

C. Influence of the number of fixations on classification

So far, all fixations, representing a viewing duration of 10
seconds, have been used for performing the classification. By
using the same 70 features, the classification performance
is assessed in function of the first 6, 9, 12 and 15 visual
fixations. If we assume that the mean fixation duration is
250ms, these correspond to a viewing duration of 1.5s, 2.25s,
3s and 3.75s respectively. Results suggest that the performance
of the four-class classifier steadily increases with the number
of visual fixations taken into account (Fig. 3). From the first 6
fixations to the first 15 fixations, the overall accuracy increases
from 41.3% to 46.3%. The more fixations we use, the better
the classification is. By making a group-based analysis, we
observe the best classification performances are for the 2
y.o. vs. adult groups. Even for 6 fixations, the accuracy is
significantly above chance for both categories: 56.4% for 2 y.o.
group (chance level is 12%) and 55.6% for adult group (chance
level is 23%). Concerning the last two groups, namely 4-6 y.o.
and 6-10 y.o., results are more contrasted. The accuracy for
the 4-6 y.o. is good, i.e. 33% (chance level is 23%). Regarding
the latter, the performance is poor, i.e. 33.8% (chance level is
41%). Classification errors mainly spread over the side groups,
i.e. 4-6 y.o. and adult groups.

Fig. 4. Average human eye position map maps for the 4 age groups.
These color maps are normalized with respect to adult map, for the sake
of comparison.

D. Saliency map features

In the previous experiments, we have only considered
features extracted from the scanpaths. Such features do not
account for any saliency and spatial fixation location bias.
In the following, we investigate whether the use of saliency
maps may improve the classifier performance. The saliency
map is a 2D topographic map representing the visual saliency
of a corresponding visual scene [15]. We evaluate two kinds
of saliency maps: one computed from eye-tracking data (see
Fig. 4) and the other predicted from computational models of
visual attention.

Human saliency map: The human eye position map is
classically computed from human fixation map convolved by a
2D Gaussian kernel [16], [17]. The normalized saliency map
represents the fixation density over the visual stimulus. The
saliency map is reduced to 12× 16 and is vectorized to make
a feature vector having a dimension of 192. With this new
set of features, composed of 70 gaze-based features and 192
saliency-based features, the classifier is again trained with
the one-vs-all strategy on the four age groups. The overall
accuracy of the classifier is 52.7%. The gain brought by
saliency-based features is only 0.5%, compared to the previous
accuracy (Fig. 2 C). Fig. 4 illustrates average saliency maps
per age group. We observe significant differences, such as the
saliency peak, the coverage [16] and the central bias.

Predicted saliency map: Rather than using human saliency
map to perform the training, saliency maps are computed
by using the RARE2012 computational model [18]. This
model presents a good trade-off between performance and
complexity. The overall accuracy of the classifier is 51.9%
which is slightly below 52.2% (Fig. 2 C). It indicates that
the predicted saliency maps do not bring added-value for
predicting age. As expected, we observe that this saliency
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model can not reproduce the development influence on gaze
behavior.

Rather than using the whole saliency map, we compute
saliency at attended locations. The computation is performed
over a patch of size 1◦× 1◦ centered on the fixation. First we
standardize the input saliency map (zero mean and standard
deviation equal to 1). We observe that fixated locations get less
salient when aging. The average z-score salience at attended
location is 0.145, 0.140, 0.087 and 0.059 for 2 y.o., 4-6 y.o., 6-
10 y.o. and adult groups, respectively. Note that a significant
difference is only observed between 4-6 y.o. and 6-10 y.o.
groups (see [11]). By concatenating the 70 gaze-based features
with the mean, median, standard deviation and first derivative
of the predicted saliency values at fixated locations, the overall
accuracy decreases to 51%. This is mainly due to the loss of
accuracy in the 4-6 y.o. group (42.6% instead of 46.1%, see
Fig. 2 C and [11]).

IV. CONCLUSION

In this paper, we demonstrate that the age of observers
can be inferred from simple statistical properties of their eye
movements. The performance of this classification can be
further improved by using richer gaze descriptors (e.g. based
on HMM [5]) or more sophisticated methods, such as deep
learning. However training a deep network would require a
much larger sample size. We believe that the rise of low-cost
eye-tracker (e.g. webcam-based [19]) will soon provide large-
scale eye-tracking datasets and bring the classification perfor-
mance to the next level. Another issue raised by this study
is the lack of computational saliency models for simulating
the gaze behavior from childhood to adulthood. This echoes
recent works on saccadic models, a range of saliency models
able to capture the viewing patterns of a given population and
use them to output the predicted scanpaths [20], [21], [22].

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grant No. 61471230.

REFERENCES

[1] J. M. Henderson, S. V. Shinkareva, J. Wang, S. G. Luke, and J. Ole-
jarczyk, “Predicting cognitive state from eye movements,” PLoS ONE,
vol. 8, no. 5, p. e64937, 05 2013.

[2] H. Tavakoli, E. Rahtu, and J. Heikkika, “Stochastic bottom-up fixa-
tion prediction and saccade generation,” Image and Vision Computing,
vol. 31, pp. 686–693, 2013.

[3] A. Coutrot, N. Binetti, C. Harrison, I. Mareschal, and A. Johnston, “Face
exploration dynamics differentiate men and women,” Journal Of Vision,
vol. 16, pp. 1–19, 2016.

[4] L. Itti, “New eye-tracking techniques may revolutionize mental health
screening,” Neuron, vol. 88, no. 3, pp. 442–444, 2015.

[5] A. Coutrot, J. Hsiao, and A. Chan, “Scanpath modeling and classification
with hidden markov models,” Behavior Research Methods (in Press),
2017.

[6] B. Luna, K. Velanova, and C. F. Geier, “Development of eye-movement
control,” Brain and cognition, vol. 68, no. 3, pp. 293–308, 2008.
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