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ABSTRACT
We extend our previous work on learning smooth graph
signals from a small number of noisy signal samples. Mini-
mizing the signal’s total variation amounts to a non-smooth
convex optimization problem. We propose to solve this prob-
lem using a combination of Nesterov’s smoothing technique
and accelerated coordinate descent. The resulting algorithm
converges substantially faster, specifically for graphs with
vastly varying node degrees (e.g., scale-free graphs).

I. INTRODUCTION

Background. Graphs are flexible and powerful models
for many massive data sets (e.g., sensor networks and online
social networks) [1]–[4]. In graph signal processing (GSP),
each graph node is associated with a data point and the
graph edges reflect data dependencies or similarity relations.
Applications of GSP include social networks [5], [6], news
sites and blog spaces [7], [8], and proteomics [9], [10].

In this paper we consider the problem of recovering a
graph signal from noisy samples taken on a small subset
of graph nodes. This problem is also referred to as semi-
supervised learning [11] or inpainting [12] on graphs. Graph
signal recovery requires some kind of smoothness, which
can be quantified in terms of a generalized notion of band-
limitation [13], Tikhonov regularization [11], graph variation
[12], and the graph total variation (TV) [14]. Building on TV,
we formulate graph signal recovery as a non-smooth convex
optimization problem. In our previous work, we solved this
problem using a combination of ADMM with denoising [15],
a primal-dual algorithm [16], and Nesterov’s method [17]
(cf. [18]). An augmented ADMM algorithm for this problem
was recently proposed in [19].

Contributions. In this paper, we propose an efficient
graph signal learning algorithm that combines Nesterov’s
smoothing technique [20] with accelerated coordinate de-
scent [21], [22]. Numerical comparisons with FISTA [23],
[24] and with the augmented ADMM algorithm [19] confirm
that our new algorithm excels in terms of convergence for
strongly irregular graphs, i.e., graphs having vastly differing
node degrees.
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II. PROBLEM FORMULATION
We consider a weighted directed graph G = (V, E ,W)

with node set V = {1, . . . , N}, edge set E ⊆ V × V , and
nonnegative weight matrix W ∈ RN×N . We have Wi,j = 0
unless there is an edge from node i to node j; the larger the
weight Wi,j , the stronger the connection from node i to j.

A graph signal is a mapping that associates to each node
i ∈ V a real value xi. We can represent a graph signal by
a vector x , (x1, . . . , xN )T ∈ RN . Assume we only have
access to noisy signal samples on the node set {1, . . . ,M}
(this can always be achieved by relabeling the nodes). Our
noisy sampling model can thus be expressed as

yi = xi + ni, i = 1, . . . ,M.

The additive noise ni, i = 1, . . . ,M , subsumes measurement
and modeling errors.

Our goal is to recover the full graph signal x from the
observations yi, i = 1, . . . ,M . To that end, the graph signal
x is required to be smooth, i.e., to vary little between
strongly connected nodes. We quantify the smoothness of
x via its (anisotropic) TV, defined as [25]

‖x‖TV =

N∑
i=1

N∑
j=1

|xj − xi|
√
Wi,j . (1)

With minor modifications, our results apply to the isotropic
TV ‖x‖ITV =

∑N
i=1

√∑N
j=1(xj − xi)2Wi,j (cf. [25]). Our

recovery method amounts to the optimization problem

min
x∈RN

1

2

M∑
i=1

(yi − xi)2 + λ‖x‖TV, (2)

in which the parameter λ > 0 balances the empirical error
and the total variation of the recovered signal.

III. SMOOTH MINIMIZATION OF NON-SMOOTH
FUNCTIONS

The problem in (2) is difficult since the TV is a convex
but non-smooth (non-differentiable) function. To resolve this
difficulty, we apply the smoothing technique from [20].

Let B : H1 → H2 be a linear operator from a finite-
dimensional Hilbert space H1 to a finite-dimensional Hilbert
space H2, both defined over the real numbers. Let Q1 ⊆ H1

be a closed convex set and letQ2 ⊂ H2 be a bounded, closed
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and convex set. Consider two continuous and convex func-
tions f̂ and ĝ on Q1 and Q2, respectively. The function f̂
is assumed differentiable with Lipschitz-continuous gradient
∇f̂(x) with Lipschitz constant L ≥ 0, i.e.,

‖∇f̂(y)−∇f̂(x)‖H1 ≤ L‖y − x‖H1 . (3)

The method in [20] is designed for convex optimization
problems of the form min

x∈Q1

f(x) with

f(x) , f̂(x) + max
u∈Q2

{〈u,Bx〉H2 − ĝ(u)}. (4)

Instead of min
x∈Q1

f(x), we solve the smooth problem

min
x∈Q1

fµ(x) with the proxy fµ(x) , f̂(x) + hµ(x), where

hµ(x) , max
u∈Q2

〈u,Bx〉H2
− ĝ(u)− µ

2
‖u‖2H2

(5)

and µ > 0 is a smoothing parameter. It can be shown that

fµ(x) ≤ f(x) ≤ fµ(x) +
µ

2
max
u∈Q2

‖u‖2H2
,

and hence fµ(x) is indeed a uniform smooth approximation
of the objective function f(x). The function hµ(x) in (5)
is differentiable with gradient ∇hµ(x) = B∗uµ(x), where
uµ(x) is the maximizer in (5). Furthermore, ∇hµ(x) is
Lipschitz continuous with constant 1

µ‖B‖
2
op [20, Theorem

1]. Due to the Lipschitz continuity of ∇f̂(x) (cf. (3)),
the function fµ(x) has a Lipschitz-continuous gradient
∇fµ(x) = ∇f̂(x) +B∗uµ(x) with Lipschitz constant

Lµ , L+
1

µ
‖B‖2op. (6)

IV. SMOOTHING THE GRAPH SIGNAL
RECOVERY PROBLEM

We will now cast the graph signal recovery problem (2)
in the form (4). For this purpose, we introduce the local
gradient vector ∇ix at node i ∈ V with elements(

∇ix
)
j
, (xj − xi)

√
Wi,j , j = 1, . . . , N.

The graph gradient is then given by

∇G : RN → RN×N , ∇Gx = (∇1x, . . . ,∇Nx)T .

RN and RN×N are Hilbert spaces with respective inner
product 〈x,y〉2 ,

∑
i xiyi and 〈X,Y〉F ,

∑
i,j Xi,jYi,j .

The negative adjoint of ∇G equals the divergence operator,
divG = −∇∗G , which maps a matrix P to a vector divG P
with entries (cf. [14])

(divG P)i ,
∑
j∈V

√
Wi,jPi,j −

√
Wj,iPj,i, i = 1, . . . , N.

The TV term in (1) can now be written as λ‖x‖TV =
max
P∈Pλ

〈P,∇Gx〉F with the closed convex set

Pλ , {P : |Pi,j | ≤ λ, 1 ≤ i, j ≤ N}.

Furthermore, (2) can be reformulated as

min
x∈RN

1

2

M∑
i=1

(yi − xi)2 + max
P∈Pλ

〈P,∇Gx〉F. (7)

The optimization problem (7) is of the form (4) with
B = ∇G , f̂(x) = 1

2

∑M
i=1(yi − xi)2 with Lipschitz constant

L = 1, u = P, ĝ(u) ≡ 0, Q1 = RN , and Q2 = Pλ. The
smoothed version of (7) is given by min

x∈RN
fµ(x) with

fµ(x) =
1

2

M∑
i=1

(yi − xi)2 + max
P∈Pλ

(
〈P,∇Gx〉F−

µ

2
‖P‖2F

)
.

(8)
The gradient ∇fµ(x) is obtained as

∇fµ(x) = z− divG Pµ(x) (9)

with z = (x1 − y1, . . . , xM − yM , 0, . . . , 0)T and

Pµ(x) = argmax
P∈Pλ

(
〈P,∇Gx〉F −

µ

2
‖P‖2F

)
= argmin

P∈Pλ

∥∥∥P− 1

µ
∇Gx

∥∥∥2
F

is the orthogonal projection of 1
µ∇Gx onto Pλ, which is

given by the element-wise clipping

(
Pµ(x)

)
i,j

=

{
(xj − xi)

√
Wi,j

µ , if |xj − xi|
√
Wi,j ≤ µλ,

λ sgn(xj − xi), else.

According to (6), the Lipschitz constant for ∇fµ(x) equals

Lµ = 1 +
1

µ
‖∇G‖2op = 1 +

1

µ
‖divG ‖2op. (10)

The operator norm in this expression (and hence the
Lipschitz constant) is essentially determined by the maxi-
mum (weighted) node degree [17].

V. RECONSTRUCTION ALGORITHM
When applying classical gradient-based algorithms (e.g.,

[20], [24], [26]) to minimize the convex, continuously dif-
ferentiable proxy fµ(x) in (8), the step size is determined by
the reciprocal of the Lipschitz constant Lµ in (10). When this
Lipschitz constant is large (which happens if there are nodes
with large weighted degree), the convergence of the algo-
rithms becomes slow. To mitigate this problem, we propose
to apply the accelerated coordinate descent (ACD) method
from [21]. Here, the convergence is determined by the
distinct (and hopefully smaller) coordinate-wise Lipschitz
constants L1, L2, . . . , LN defined by

|∇ifµ(x+ sei)−∇ifµ(x)| ≤ Li|s|.

Here, ei ∈ RN denotes the ith standard unit vector and the
inequality must hold for all x ∈ RN and s ∈ R.

For this scenario, the ACD method from [21] achieves an
asymptotic rate of convergence of O( 1

k2 ) in the function
value. For each iteration of this ACD method, only one
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element (coordinate) of the gradient needs to be computed
but a relatively expensive summation of two N -dimensional
vectors is required. The latter drawback has been resolved
in [22] via a change of variables. Using the results from
Section IV for the gradient of fµ(x) we obtain Algorithm 1
as an adaptation of the efficient implementation [22] of the
ACD method to our (smoothed) signal recovery problem.
This algorithm uses in-place computations and (for better
clarity) the child set ch(i) , {j ∈ V : Wi,j > 0} and the
parent set pa(i) , {j ∈ V :Wj,i > 0} of node i. Moreover,
it uses the following coordinate-wise Lipschitz constants for
the gradient ∇fµ(x) (see the Appendix for a proof).

Lemma 1. The coordinate-wise Lipschitz constants Li, i =
1, . . . , N , of the gradient ∇fµ(x) in (9) are given by

Li = 1 +
2

µ
di, di ,

N∑
j=1

(Wi,j +Wj,i). (11)

This result says that the Lipschitz constant for the ith
coordinate is essentially determined by the degree di of node
i. In many graphs (e.g., scale-free), the majority of nodes
has small degree and only few nodes have large degrees.
For those types of graphs, we expect our ACD algorithm to
converge particularly fast.

VI. NUMERICAL EXPERIMENTS

We next assess the performance and the convergence
speed of Algorithm 1 using a clustered scale-free graph that
is a good model e.g. for online social networks that consist of
multiple communities (clusters) with opinion-leaders (hubs)
in each community. All edges in the graph are undirected
and unweighted, i.e., we ensure Wi,j =Wj,i ∈ {0, 1}.

Graph (Signal) Construction. Our iterative construction
was initialized with a graph with n = 10 nodes, grouped into
5 disjoint subgraphs, each consisting of two nodes connected
by an edge. The graph signal was obtained by assigning
values from the alphabet {1, 2, 3, 4, 5} to the nodes such
that the values are identical within each subgraph but distinct
for different subgraphs. We then iteratively grew the graph
of size n using a modified preferential attachment scheme
[27]. Specifically, in each step we added an additional node
with signal value xn+1 drawn uniformly at random from
{1, . . . , 5}, and then placed 5 edges between the new node
and existing nodes with probability

P{Wi,n+1 = 1} ∝ dai (n) exp (−5|xn+1 − xi|) ,

where di(n) is the current degree of node i and a > 0
is a parameter. Edges therefore were preferably added for
nodes with large degree di(n) (leading to a scale-free graph
with power-law degree distribution) and for nodes that
have the same signal value (enforcing a clustered graph
structure with 5 communities and few edges between distinct
communities). An example graph is shown in Fig. 1.

Algorithm 1 ACD graph signal recovery

Input: x0, µ > 0
Initialize: Li = 1 + 2

µ

(∑
j∈ch(i)Wi,j +

∑
j∈pa(i)Wj,i

)
,

u = x0, w = x0, t = 1
N , B2,2 = 1, B2,1 = 0

repeat
1: τ = t

2: t = 1+
√
1+4N2τ2

2N

3: choose i with uniform probability from {1, . . . , N}
4: zi = B2,1ui +B2,2wi

5: for j ∈ ch(i) do
6: zj = B2,1uj +B2,2wj

7: Gi,j = (zj − zi)
√
Wi,j

8: aj =

{
1
µ if |Gi,j | ≤ λµ,
λ
|Gi,j | else

9: end
10: r =

∑
j∈ch(i) aj

√
Wi,jGi,j

11: for l ∈ pa(i) do
12: zl = B2,1ul +B2,2wl

13: Gl,i = (zi − zl)
√
Wl,i

14: dl =

{
1
µ if |Gl,i| ≤ λµ,
λ
|Gl,i| else

15: end
16: b =

∑
l∈pa(i) dl

√
Wl,iGl,i

17: c = r − b

18: g =

{
xi − yi − c if 1 ≤ i ≤M,

−c else

19: B2,1 ← B2,1 +
1
tN (1−B2,1)

20: B2,2 ← B2,2

(
1− 1

tN

)
21: ui ← ui − τ

Li
g

22: m = −B2,1

B2,2
τ + 1

B2,2

τ+tN−1
tN

23: wi ← wi − m
Li
g

until stopping criterion is satisfied
Output: x̂ = B2,1u+B2,2w

Simulation Setup. We constructed a graph with N =
5000 nodes and 49910 undirected edges. The graph signal
was sampled at M = 500 randomly chosen nodes (thus
M/N = 10%). The noise was i.i.d. Gaussian with zero mean
and variance σ2. We used Algorithm 1 with µ = 1 and µ =
100 to recover the graph signal. We compare our method
with the following algorithms: 1) FISTA [23], [24] on the
smoothed proxy fµ with global Lipschitz constant Lµ = 1+
2
µ max

i
di; 2) the augmented ADMM algorithm [19, Section

4.2] with initial step size ρ = 1
2max di

and varying penalty
strategy [19, Section 2.3]. The augmented ADMM algorithm
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Fig. 1: Example graph (with N = 500) from our construction
with a = 1 (node size is proportional to node degree).

is of particular interest for scale-free graphs since it involves
a scaling matrix that takes nonuniform degree distribution
into account. All experiments were repeated 10 times with
different realizations of the graph signal, the graph topology,
the sampling set, and the noise. We quantify the recovery
performance in terms of the normalized mean squared error
(NMSE) e2k = E{‖x̂k−x‖22}/E{‖x‖22}. The signal-to-noise
ratio (SNR) was SNR = E{x2i }/σ2 = 20 dB.

Results. On average, N iterations of Algorithm 1 require
20|E|+O(N) operations whereas one iteration of FISTA and
the augmented ADMM (ignoring the operation count of the
penalty strategy) requires 10|E|+O(N) operations. There-
fore, in our convergence plots we use a normalized iteration
count that compares every N th iteration of Algorithm 1 with
every second iteration of FISTA and augmented ADMM.

Fig. 2(a) shows the results for graphs with a = 1 and
regularization parameter λ = 0.0001. Since most coordinate-
wise Lipschitz constants in the corresponding graphs are
substantially smaller than the global Lipschitz constant, our
method (labeled ACD) indeed converges faster than FISTA,
and also significantly faster than the augmented ADMM.
By applying stronger smoothing, the convergence speed can
be improved but the reconstruction performance deteriorates
in general, which is in agreement with [18], [20]. We
highlight that Nestereov’s smoothing strategy seems to be
very effective for graphs with vastly varying node degrees,
even though the additional smoothing step typically slows
down the convergence on different graph models [16], [19].
For graphs with a = 1.5 and thus larger degree variations
(stronger hubs), the convergence of FISTA is further slowed
down so that the advantage of ACD becomes even more
pronounced as can be seen in Fig. 2(b). In Fig. 2(c) we
used graphs with a = 1.5 and regularization parameter
λ = 0.01. Note that for a larger regularization parameter
the superior convergence performance of ACD seems to
diminish compared to the augmented ADMM algorithm.

VII. CONCLUSION

We considered the recovery of smooth graph signal from
noisy samples. The smoothness of the graph signal is quan-
tified in terms of the graph total variation. By combining
Nesterov’s smoothing technique with accelerated coordinate
descent, we developed a learning algorithm particularly well
suited for graphs with strongly skewed degree distribution.
Numerical experiments confirmed the superior convergence
of our method on graphs of this type. The convergence
speed of our method could be further improved by using
continuation techniques [18]; this is left to future work.

APPENDIX: PROOF OF LEMMA 1

Using (9), the linearity of the divergence operator, and the
triangle inequality, we obtain

|∇lfµ(x+ sel)−∇lfµ(x)|
≤ |s|+

∣∣( divG(Pµ(x+ sel)−Pµ(x))
)
l

∣∣ . (12)

The lth element of the graph divergence can be expressed as
(divG P)l =

∑
j∈V

√
Wl,jPl,j −

√
Wj,lPj,l = (divGl P)l,

where Gl is the graph defined by the weight matrix Wl ∈
RN×N with elements

W l
i,j ,

{
Wi,j if i = l or j = l,

0 else.

Therefore∣∣( divG(Pµ(x+ sel)−Pµ(x))
)
l

∣∣
≤ ‖divGl(Pµ(x+ sel)−Pµ(x))‖2
≤ ‖divGl ‖op ‖Pµ(x+ sel)−Pµ(x))‖F .

(13)

Since Pµ(x)) is the orthogonal projection of 1
µ∇G(x) onto

Pλ, we further have

‖Pµ(x+ sel)−Pµ(x))‖F ≤
1

µ
‖∇G(sel)‖F

=
1

µ
‖∇Gl(sel)‖F ≤ |s|

1

µ
‖∇Gl‖op,

(14)

where ∇Gl is the gradient on Gl. Since ∇Gl is the adjoint of
divGl , combination of (12), (13), and (14) yields

|(∇fµ(x+sel))l−(∇fµ(x))l| ≤ |s|
(
1+

1

µ
‖∇Gl‖2op

)
. (15)

According to [14, Proposition 5.2], the graph gradient is
bounded as ‖∇G‖2op ≤ 2max

i

∑N
j=1(Wi,j+Wj,i). Applying

this bound to Gl entails ‖∇Gl‖2op ≤ 2max
i

∑N
j=1(W

l
i,j +

W l
j,i) = 2

∑N
j=1(Wl,j +Wj,l) = 2dl, which in combination

with (15) leads to (11).
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