
Time-Data Trade-off in the Sparse Fourier
Transform

Abdulmalik Aldharrab, Mike E. Davies

Institute for Digital Communications, University of Edinburgh, EH9 3JL, UK
Email: {a.aldharrab, mike.davies}@ed.ac.uk

Abstract—It has been shown that the Discrete Fourier Trans-
form (DFT) can be computed in sublinear time from a sublinear
number of samples when the target spectrum is sparse. However,
this is usually only expressed qualitatively in terms of the order
of number of computations/samples. Here we investigate the
explicit time-data tradeoff for the Sparse Fourier Transform
(SFT) algorithm proposed by Pawar and Ramchandran using
coding theoretic tools. This leads to an optimal oversampling rate
and algorithm configuration that minimises computation while
keeping the required number of time domain samples close to
the minimum value.

I. INTRODUCTION

The time domain samples used to calculate the Discrete
Fourier Transform (DFT) should be obtained by sampling the
analogue signal at more than Nyquist rate which is twice the
maximum frequency that needs to be preserved. However, if
the frequency domain of a signal contains only few non-zero
components (sparse) the DFT can be calculated from fewer
samples using the Sparse Fourier Transform (SFT) techniques.

Sparse Fourier Transform algorithms can be generally di-
vided into two main categories, the first one is the Windowed
Sparse Fourier Transform [1] [2] [3], and according to the
empirical evaluation conducted by Gilbert et al. (2014) [4]
the best results achieved using this technique is by Hassanieh
et al. (2012) [3]. The second category is the Aliasing Based
Sparse Fourier Transform. This category was invented at least
three times independently by [5], [6] and [7] which gives an
indication about the importance of such approach.

A. Relation to Prior Work

In most SFT algorithms the minimum number of time
domain samples required by the algorithm to achieve high
probability of success is not accurately defined. However,
Pawar and Ramchandran (2013) [5] use coding theoretic
tools to identify the minimum required time domain samples
with high accuracy. Nevertheless, using the minimum samples
leads to high computational complexity. This paper utilises
the coding-theoretic tools to investigate the time-data tradeoff
for the Aliasing Based SFT and hence derive an optimal
operating point which leads to minimum computational com-
plexity while maintaining the required number of time domain
samples to a near minimum value. The ability to place tight
bounds on an algorithm is of a great benefit since it allows
the algorithm to be operated with high efficiency.

One of the limitations of the considered algorithm is the
assumption that the locations of the non-zero frequency com-
ponents follow an average case signal model which assumes
that the support of the signal X ∈ CN is drawn uniformly
at random from the set {0, . . . , N − 1}. Furthermore,
the conducted analysis assumes that signals are already in
the digital domain. This can be extended to the analogue
domain by a proper manipulation of Fourier transforms in
a way similar to the work of Feng and Bresler (1996) [8].
Moreover, the considered signals are assumed noiseless and
exactly sparse. These limitations will be addressed in future
work.

Section II introduces the algorithm and Section III maps the
problem to a sparse bipartite graph to allow utilising the well-
established coding theory. The tradeoff between the number of
time domain samples used and the computational complexity
is introduced in Section IV. Section V introduces the optimal
operating point that leads to both low computational complex-
ity and low sample complexity.

II. SHIFTING AND SUB-SAMPLING IN TIME

At a high level the algorithm uses multiple stages, each
sub-sampling the original signal in time using a unique sub-
sampling factor. For each stage the DFTs of two sub-sampled
in time signals are calculated where one of the signals is
shifted in time prior to sub-sampling [5].

Sub-sampling the time domain signal x ∈ CN will introduce
aliasing to the frequency domain signal X ∈ CN . A relation
between the original signal and the sub-sampled in time
version can be derived starting from the definition of the
Inverse-DFT and sub-sampling in time by a factor of p:

x[p · n] = 1

N

N−1∑
l=0

X(l) · ej2πln/(N/p) (1)

for any m and n that are integers:

x[p · n] = 1

N/p

N/p−1∑
k=0

1

p

p−1∑
m=0

X(k +m ·N/p)︸ ︷︷ ︸
Xp(k)

·ej2πkn/(N/p)

(2)

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2170

The result of sub-sampling in time is a signal that is of a
lower dimension Xp ∈ CN/p and can be related to the original
high dimensional signal X ∈ CN as follows:

Xp[((k))N/p] =
1

p

p−1∑
m=0

X[((k +m ·N/p))N] (3)

where ((•))N indicates periodicity over a period of N . The
frequency components that are N/p bins apart will collide into
one frequency bin. However, using sub-sampling factors that
result in signals with lengths that are either co-prime integers
or cyclically shifted sets of co-prime integers will ensure that
the components that collide in one of the sub-sampled stages
do not collide in the others [5].

Shifting in time will multiply each frequency component by
an exponential term:

x[((n))N] F−→ X[((k))N]

x[((n+ no))N] F−→ X[((k))N] · ej2πk(no)/N
(4)

where x[((n + no))N] is the time domain signal circularly
shifted by no and X[((k))N] is the Discrete Fourier Transform
of x[((n))N]. Observing the exponential term introduced by
the shift in time it can be clearly seen that it carries information
about the location in the frequency domain at which it exists
(k).

Consider the signal X ∈ C20 which has a few non-zero
frequency components {X(3) = 3, X(8) = 1.7, X(10) =
1, X(13) = 2.4, X(18) = 4.3}. Let ym,n be the mth

observation vector which contains the content of the mth

frequency bin in both the sub-sampled signal and the shifted
(by no = 1) sub-sampled signal in stage (n = 0) which sub-
samples in time by p = 5.

y0,0
1 = X(8)×

[
1
W 8

]
= 1.7×

[
1
W 8

]
(5)

where W = ej2π/N is the N th root of unity, and j =
√
−1.

Since y0,0 satisfies the following conditions:

|ym,n[0]| = |ym,n[1]| (6)

(
N

2π

)
×6 (ym,n[1]/ym,n[0]) integer ∈ {0, ... , N − 1}

(7)

This means that y0,0 can be detected as containing only a
single Fourier component (Single-ton) and subsequently the
value and location of that component in X ∈ C20 can be
recovered as follows:
• Location: kest = (N/2π)× 6 (ym,n[1]/ym,n[0]).
• Value: X(kest) = ym,n[0].
However, y2,0 does not satisfy any of the conditions and it

is called a (Multi-ton):

1Scaling is omitted from observation vectors, however, it follows the
relations provided by equations (1) until (3).

y2,0 = 1×
[

1
W 10

]
+ 4.3×

[
1

W 18

]
=

[
5.3

2.48− j 2.53

]
(8)

The non-zero components in X ∈ C20 can be recovered
by alternating between stage 0 (sub-sampled by p = 5) and
stage 1 (sub-sampled by p = 4) as shown in Fig. 1. Removing
the recovered components from all sub-sampled signals will
iteratively convert more (Multi-tons) to (Single-tons) allowing
further recovery [5].

Fig. 1. X ∈ C20 sub-sampled in time by p = 5 (left), by p = 4 (right). Non-
colliding components {X(8), X(13), X(3), X(10)} can be recovered and
removed to allow recovering colliding components {X(18)}.

III. RELATION TO CODING THEORY

Pawar and Ramchandran (2013) [5] map the problem of
recovering sparse signals from sub-sampled versions to fit a
randomized graph that is constructed based on the “Balls-and-
Bins” model as shown in the example of Fig. 2. Here there are
d = 2 edges originated from each left node which means that
the left degree is d = 2 and this corresponds to the number
of stages used (the number of sub-sampled signals).

Fig. 2. Mapping the problem of recovering sparse signals from sub-sampled
versions into a sparse bipartite graph to utilise the well-established coding
theory.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2171

For large N (signal length) and k (sparsity) the number
of edges remaining in the graph after each iteration can
be estimated using the asymptotic theory Density Evolution
which gives an estimation of the density of the remaining
edges in the graph after each iteration as follows2:

Pr =
(
1− e− 1

ν Pr−1

)d−1
r = 1, 2, . . . (9)

Where:
Pr: Probability that an edge exists after {r} iterations.
ν ≈ nb

k·d : Per-stage oversampling ratio. d: Number of stages.
nb =

∑d−1
i=0 li : Total number of observation vectors.

li: Length of the ith sub-sampled signal.
m = 2× nb: Total time domain samples used.

Under the average case assumption, using sub-sampled
signals with comparable lengths l0 ≈ l1 ≈ . . . ≈ ld−1 will
reduce the probability of collisions. This will allow defining
the oversampling ratio as η = m

k ≈ 2dν. The density of the
edges remaining in the graph is directly related to the fraction
of the non-recovered frequency components and as demon-
strated by Fig. 3 as long as Pr < Pr−1 after each iteration
the density will reduce. This can be guaranteed by choosing
oversampling ratio which ensures that the Density Evolution
relation given by (9) will achieve convergence. Moreover,
larger oversampling ratios will allow Pr to reduce in larger
steps after each iteration which will allow faster convergence
as illustrated by Fig. 5. Pawar and Ramchandran (2013) [5]
show that the algorithm closely follows the theoretical results
obtained based on Density Evolution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pr-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r

Fig. 3. The behaviour of Density Evolution when the oversampling ratio
is chosen as η = 2.5944 which is just above the minimum required
oversampling ratio for (d = 4 stages).

IV. THE SFT TIME-DATA TRADEOFF

Despite the fact that it has been shown that the complexity
of such algorithms is O(k log k) [5] the complexity has an

2It is worth mentioning that the relation given by Equation (9) is explicitly
mentioned in [9] and the recent work by Li, Pawar, and Ramchandran [10].

interesting behaviour that depends on the different parameters.
To better understand this behaviour Density Evolution is used
to identify the number of iterations {r} required to achieve
probability {Pr < ε} that an edge exists, where we set
ε = 1×10−8 and this is plotted in Fig. 4. This corresponds to
high probability that the algorithm converges. As shown in Fig.
5 a minimum oversampling ratio is required to allow conver-
gence and higher oversampling ratios require fewer iterations
to achieve convergence, however, the relations do not clarify
the impact of increasing oversampling on the complexity. To
quantify such an effect the complexity of each part of the
algorithm is analysed to find out the overall complexity. Since
the complexity of different operations is usually expressed
using O(•) notation which gives the order of the complexity
rather than the actual complexity this notation is avoided by
introducing some simplifying assumptions. These assumptions
can be modified with the exact complexity associated with the
specific hardware.

1 1.5 2 2.5 3 3.5
Oversampling Ratio

0

10

20

30

40

50

60

N
um

be
r o

f I
te

ra
tio

ns
 R

eq
ui

re
d

d = 2
d = 3
d = 4
d = 5

Fig. 4. The relation between the oversampling ratio η and the minimum
number of iterations required to achieve low probability that an edge exists
(convergence) for different number of stages d.

The algorithm starts by calculating 2× d DFTs of compa-
rable lengths. Each DFT has a length ≈ m

2.d . This makes the
complexity of calculating the short DFTs:

C1 ≈ m log
(m

2 · d

)
(10)

During every iteration the algorithm searches for non-
colliding components by performing the following steps over
all the (nb = m

2) observation vectors. The first step is
checking whether the observation vector is empty or not
(ym,n[0] = ym,n[1] = 0) and this is assumed to cost two
operations. The next check will be whether or not it contains
colliding components and this is done through three steps.
The first one is comparing the magnitudes of the entries in
the observation vector (|ym,n[0]| = |ym,n[1]|) and this is
assumed to cost three operations. The second step calculates
an estimate of the location from the phase (kest = (N/2π)×
6 (ym,n[1]/ym,n[0])) and this requires dividing the two entries

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2172

10 20 30 40 50 60 70 80 90 100
 Number of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 P

r-
1

Oversampling = 2.4 never achieves convergence
Oversampling = 2.5944 requires 93 iterations to converge
Oversampling = 4 requires 5 iterations to converge

Fig. 5. Number of iterations required to achieve low probability that an edge
exists varies based on the oversampling ratio used (d = 4 stages).

of the observation vector and calculating the angle of the result
and then multiplying by (N/2π) which is constant and can be
calculated once. The second step is assumed to cost three oper-
ations. The third step checks that kest ∈ {0, ... , N − 1} and
this can be done by checking if kest is smaller than the largest
entry in the set and it is assumed to cost two operations. This
makes the cost of searching for a non-colliding component
(Single-ton) 10 operations per observation vector:

C2 = 5 · r(ν, d) ·m (11)

where r(ν, d) is the minimum number of required iterations
which is a function of the oversampling ratio and the number
of stages used, we will see that this function dominates the
cost. If one of the (k) components is detected it will be
subtracted from all the DFTs in all the d stages and this is
assumed to cost 2.d operations. Subtracting the components
requires knowing their locations and this requires calculating
(d−1) modulo operators, each assumed to cost one operation:

C3 = k · (3d− 1) (12)

and this leads to the overall cost of the algorithm:

Ctotal = C1 + C2 + C3

= m log
(m

2 · d

)
+ 5 · r(ν, d) ·m+ k · (3d− 1)

(13)

V. DISCUSSION

For a given sparsity (k) the algorithm requires a minimum
number of time domain samples to converge (m = ηk), hence,
if the sparsity level is high the term C1 is mildly superlinear
in m and it will dominate. C2 dominates the choice of optimal
oversampling ratio in most cases. It depends on the number of
time domain samples used (m) and the number of iterations
required for convergence (r(ν, d)) which both depend on
two parameters. The first parameter is the oversampling ratio
η ≈ 2dν, using η just above the minimum oversampling ratio

required will make the algorithm behave in the way shown in
Fig. 3. As the contour taken by the algorithm passes closer
to the line corresponding to Pr = Pr−1 a larger number of
iterations will be required to achieve convergence, however,
increasing the oversampling ratio just a little will move the
contour away and this will allow convergence using fewer
number of iterations. The second parameter is the number
of stages used, d. Writing Pr = f(Pr−1) we note that for
d = 2 the gradient ∂f(0)/∂P is non-zero and this indicates
linear convergence, hence, d = 2 is not competitive. On the
other hand, for d ≥ 3 the gradient is zero and d = 3 has the
minimum oversampling requirement. The term C3 represents
the cost of removing the recovered components and this cost
is fixed and depends on the number of components that need
to be removed which is related to the sparsity level, it also
depends on the number of stages from which the components
will be removed. Fig. 6 shows an example for (d = 4)
stages, it can be noticed that if the oversampling ratio is near
the minimum the cost is huge, for instance, if the sparsity
k = 400 operating at an oversampling ratio of (η = 2.593)
will require (608000) operations, on the other hand, increasing
the oversampling to (η = 4.422) will cause the complexity to
drop to (53550) operations, which is an order of magnitude
smaller and this is at the expense of an increase in the total
number of time domain samples used from m ≈ (1038) to
m ≈ (1769).

0 10 20 30 40 50 60
OverSampling Ratio

0

2

4

6

8

10

12

C
om

pl
ex

ity
 (O

pe
ra

tio
ns

)

×105 Overall complexity

Sparsity (k) = 200
Sparsity (k) = 400

Fig. 6. Overall complexity, operating just above the minimum oversampling
ratio will allow achieving minimum complexity while still using a small
number of time domain samples.

VI. CONCLUSION

The computational complexity of the Aliasing Based SFT
has been investigated and it was shown that in contrast to
minimal sampling requirements an optimum operating point
that has both low sample complexity and low computational
complexity is above the minimum oversampling. Without such
operating point the algorithm will operate either near the
critical oversampling which is of a huge cost or above the
optimum oversampling which is also of a large cost. The

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2173

considered signals are assumed noiseless and exactly sparse
and the time-data tradeoffs for more general SFT problems
will be considered in future work.

REFERENCES

[1] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss,
“Near-optimal sparse fourier representations via sampling,” in Proceed-
ings of the thiry-fourth annual ACM symposium on Theory of computing.
ACM, 2002, pp. 152–161.

[2] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A tutorial on fast fourier
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 57–66,
March 2008.

[3] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal
sparse fourier transform,” in Proceedings of the forty-fourth annual ACM
symposium on Theory of computing. ACM, 2012, pp. 563–578.

[4] A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt, “Recent developments
in the sparse fourier transform: A compressed fourier transform for big
data,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 91–100,
Sept 2014.

[5] S. Pawar and K. Ramchandran, “Computing a k-sparse n-length discrete
fourier transform using at most 4k samples and o(k log k) complexity,”
in 2013 IEEE International Symposium on Information Theory, July
2013, pp. 464–468.

[6] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and L. Shi,
“Sample-optimal average-case sparse fourier transform in two dimen-
sions,” in the 51st Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Oct 2013, pp. 1258–1265.

[7] S. H. Hsieh, C. S. Lu, and S. C. Pei, “Sparse fast fourier transform by
downsampling,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), May 2013, pp. 5637–5641.

[8] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling and
reconstruction of multiband signals,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, May
1996, pp. 1688–1691 vol. 3.

[9] S. Pawar, “Pulse: Peeling-based ultra-low complexity algorithms for
sparse signal estimation,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Dec 2013. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-
2013-215.html (Acceded: March, 2017).

[10] X. Li, S. Pawar, and K. Ramchandran, “Sub-linear time compressed
sensing using sparse-graph codes,” in 2015 IEEE International Sympo-
sium on Information Theory (ISIT), June 2015, pp. 1645–1649.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2174

