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Abstract—The 3D extension of the High Efficiency Video 

Coding (HEVC) standard achieves large compression rates 

thanks to the addition of several tools to encode multiview and 

depth information on top of those available in HEVC. The use of 

such tools incur in a very large computational demand, which 

can be a serious problem in power and computationally-

constrained devices and applications. However, not all 

information contained in an image is fundamental to the viewer, 

so that different levels of computational effort can be employed 

when encoding different image regions. The Region of Interest 

(ROI) concept is used in this work to classify each Coding Unit 

(CU) as foreground, heterogeneous background and 

homogeneous background. Then, a simplified encoding process is 

employed in those regions classified as homogeneous 

background, terminating earlier the partitioning process in 

texture CUs, while still still performing the regular decisions in 

areas classified as ROI. Experimental results show an average 

reduction of 22.6% in computational complexity for texture 

coding with negligible or non-perceived image quality 

degradation. 

Keywords—Video Coding; 3D Video; 3D-HEVC; Complexity 

Reduction; Subjective Analysis; Region of Interest; Early 

Termination. 

I.  INTRODUCTION 

Digital video content is present in the most diverse areas of 
our society nowadays and have major importance in our daily 
lives. In the last decades, playing, recording, storing and 
online streaming of 2D digital video content has become 
possible in several types of multimedia devices, including 
smartphones, tablets and personal computers, thanks to the 
development of several efficient video compression tools. 
More recently, a rise in 3D digital video content has also been 
perceived, stimulating the research for more efficient 
compression techniques that allow handling the huge amount 
of information present in such media. 

To represent a 3D video, a different image must be shown 
to each eye, so that the perception of depth occurs. To 
accomplish that, there are different data formats to represent 
3D video, such as the two-view Conventional Stereo Video 
(CSV) format, and formats based on the multi-view principle. 
The Multiview plus Depth (MVD) technology aggregates 
depth maps to the multiview concept. For each view in MVD, 
there is a texture image and an associated grayscale depth map 

image, where each pixel in the depth map represents the 
distance between the corresponding pixel in the texture image 
and the camera. One of the main advantages of MVD is the 
possibility of not actually capturing all views. By allying 
depth maps to their respective textures (regular 2D views), 
intermediate views (called synthesized views) can be 
rendered. 

The state-of-the-art 3D video coding standard is the 
3D-HEVC [1], which is an extension of the High Efficiency 
Video Coding (HEVC) standard released in 2015 by the Joint 
Collaborative Team on 3D Video Coding (JCT-3V). 
3D-HEVC is able to reduce significantly the bitrate necessary 
to represent 3D videos in the MVD format thanks to the 
addition of several compression tools on top of those already 
available in HEVC. However, the HEVC encoder is by itself 
already 500% more complex i.e., it takes around 500% more 
time to encode the same video than its predecessor (the 
H.264/AVC standard) [2], so that this complexity issue 
becomes even more serious in 3D-HEVC. Due to the 
importance of the problem, recent works have proposed 
strategies to reduce the 3D-HEVC encoding complexity. In 
[3-4] the authors propose a set of solutions to reduce the 
encoding complexity of depth map images. In [5-7], the 
proposed approaches aim at reducing the encoding complexity 
of texture frames, whereas the authors in [8] propose a texture 
and depth mixed solution. 

This work proposes a two-step adaptive complexity 
reduction scheme for texture coding in 3D-HEVC, which is 
based on information gathered during the encoding of depth 
map images. Relying on the idea of Region of Interest (ROI) 
and the concept of subjective video quality perception, the 
proposed scheme allows the encoder to identify background 
and foreground image areas and choose which of them must 
be encoded with higher or lower computational effort. By 
employing a strategy that chooses the low-complexity 
encoding areas according to their relevance to the viewer, the 
proposed method is able to reduce complexity by 22.6% in 
texture coding with insignificant loss in image quality, which 
was objectively and subjectively measured. 

This paper is structured as follows. Section II introduces 
the concept of ROI and presents a pre-analysis that builds the 
basis for the proposed method. The two-step proposed method 
is explained in Section III. Sections IV and V present the 
experimental results and the conclusions, respectively. 
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II. REGION OF INTEREST AND STATISTICAL ANALYSIS 

The concept of ROI is employed in many works on image 
processing, such as [9-11]. A ROI corresponds to a certain 
area of an image or a scene that is of particular interest to the 
user or the system, such as the face of every person, an 
individual or a moving object [9,10]. Generally, these works 
use the ROI to extract relevant information for the viewer that 
is not interested in the remaining areas of the image (which 
can be discarded or processed in a different manner), such as 
in the case of surveillance and medical video processing. 

In [11], the objects in a 3D scene that are closer to the 
camera are considered within the ROI in general purpose 
video applications. This assumption is employed in many 2D 
and 3D ROI-based strategies for information extraction, but it 
fails to detect regions that are located in the background and 
are still relevant to the viewer. As the next section shows, this 
work proposes an idea based on the concept of ROI to encode 
the most relevant image areas with different computational 
effort. However, in this work the depth map information of 3D 
scenes determines not only the image area position within the 
scene, but also whether it belongs to the ROI. 

Considering that objects in the foreground of a general 
purpose 3D scene are usually more dynamic and present a 
more detailed texture than those at the background, it is 
expected that smaller partitions are used to encode them. 
Fig. 1 presents a texture and a depth map frame of one view of 
the Balloons video sequence, in which the Coding Unit (CU) 
partitioning was performed by the 3D-HEVC Test Model 
encoder (HTM) [12]. It is noticeable that those objects in the 
foreground are much more partitioned than those at the 
background, except for the cases in which there are abrupt 
variations in the background texture.  

The characteristics shown in Fig. 1 can be numerically seen 
in Table I, which presents the percentage of texture pixels 
belonging to each CU size within the foreground and 
background of each video. For the statistics calculation, 
foreground CUs are the 50% of CUs closer to the camera in a 
frame, whereas background CUs are the remaining 50% 
farther from the camera. The statistics presented in Table I are 
calculated considering the three original views of the eight 
video sequences that compose the 3D-HEVC Common Test 
Conditions (CTC) [13]. A quantization parameter (QP) equal 
to 30 for texture images and 39 for depth maps was employed 
in the tests.  

The table shows that the great majority of background 
texture pixels belong to large CUs. On average, 75% of all 
background pixels are encoded either as 64×64 or as 32×32 
CUs, whereas only 5.4% belong to 8×8 CUs. Oppositely, 
foreground pixels are rarely encoded as 64×64 CUs, but are 
very often encoded in smaller sizes, especially 32×32 and 
16×16. However, notice that in two sequences (Shark and 
UndoDancer) 64×64 CUs are not the majority in the 
background. In fact, the background pixels of UndoDancer 
were mostly encoded as 16×16 CUs. This shows that it is not 
possible to definitely assume that only the depth is enough to 
determine how partitioned a CU should be, even though 
background areas are on average less partitioned than the 
foreground. In some cases, the background is composed of 

multiple objects at different depths, so that it must be 
partitioned as much as the foreground. 

III. ADAPTIVE TWO-STEP EARLY TERMINATION BASED  

ON DEPTH INFORMATION  

Based on the analysis presented in the previous section, 
this work proposes a two-step complexity reduction strategy 
for 3D-HEVC texture coding. Firstly, an analysis based on 
average depth is performed over each depth map CU in order 
to classify the corresponding texture CU as foreground or 
background. Secondly, for each CU classified as background, 
a second analysis based on gradient depth is performed over 
the depth map CU to determine whether it belongs to a ROI. 
Finally, an adaptive early termination is applied to every CU 
classified as non-ROI background, avoiding further 
partitioning.  

A. Foreground/Background Classification 

The classification of each texture CU as background or 
foreground is based on the average depth of the corresponding 
depth CU, which is the CU located at the same position in the 
depth map image. As previously explained, pixel values in a 
depth map image represent the distance of the texture pixels to 
the camera. The larger the value is, the farther it is from the 
camera. As the encoder divides an image in CUs of variable 
sizes, it is possible that within the same CU certain regions are 
closer and others are farther to the camera, so that an average 
depth must be calculated to classify the CU. A sampled depth 
average, called here as SA, was computed based on the four 
corner samples (S1, S2, S3, S4) and the central sample (S5) of 
each CU, as shown in Fig. 2(a). The value of SA is calculated 
separately for each CU and then compared to an adaptive 

(a) (b)
 

Fig. 1. Coding Unit partitions in (a) texture and (b) depth map of one view of 
the Balloons video sequence. 

TABLE I.  TEXTURE PIXELS DISTRIBUTION WITHIN BACKGROUND  
AND FOREGROUND CUS 

3D Video 

Sequence 

Background Foreground 

64x64
(%) 

32x32 
(%) 

16x16 
(%) 

8x8 
(%) 

64x64 
(%) 

32x32 
(%) 

16x16 
(%) 

8x8 
(%) 

Balloons 43.0 31.7 20.7 4.6 3.2 58.0 32.0 6.8 

Kendo 50.4 25.7 18.0 5.9 3.4 47.9 35.4 13.3 

Newspaper 42.0 32.0 19.8 6.2 22.2 42.6 27.2 8.0 

GTFly 63.7 20.2 13.9 2.2 4.6 56.3 30.7 8.5 

PoznanHall2 75.4 18.3 5.5 0.8 5.0 41.6 46.9 6.5 

PoznanStreet 44.8 30.0 20.4 4.8 3.4 54.3 34.4 7.9 

UndoDancer 22.3 31.6 35.1 10.9 38.2 32.7 19.1 10.1 

Shark 31.3 39.6 21.7 7.4 3.2 62.8 26.0 8.0 

Average 46.6 28.7 19.4 5.4 10.4 49.5 31.4 8.6 
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threshold AvgThr, determined as follows, in order to classify 
the CU as background or foreground. 

To determine the threshold AvgThr, for each depth CU 
processed during the encoding of a depth map image, the 
value of SA is computed as explained in the previous 
paragraph. After that, the value of AvgThr is found by 
normalizing the SA of all CUs in the depth image according to 
the nearest and farthest ones and by selecting the median, i.e. 
the SA value at 50% of the distribution curve, as shown in (1). 
In (1), n represents the number of CUs in the depth frame, Min 
is the minimum function used to find the nearest depth and 
Max is the maximum function used to find the farthest depth 
to the camera. Fig. 2(b) illustrates an example of threshold 
calculation for the Balloons sequence. 
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By doing so, the 3D scene can be split into two regions – 
the foreground, composed of depth CUs with SA smaller than 
AvgThr, and the background, composed of depth CUs with SA 
larger than AvgThr, as shown in Fig. 2(c). Texture CUs are 
then classified as foreground or background, according to the 
classification of their corresponding depth CUs.  

B. ROI/Non-ROI Classification 

Based on the assumption that foreground information is 
more relevant to the viewer than background [11], every 
texture CU at the foreground is directly classified as belonging 
to a ROI in this work. Oppositely, texture CUs classified as 
background must be further analyzed in order to detect if they 
are relevant to the viewer. The analysis presented in section II 
showed that not all depth CUs at the background are 
composed of homogeneous areas, so that they cannot be 
always encoded as large CUs. This happens because the 
background is generally composed of multiple objects, each 
one in a different distance from the camera, creating borders in 
the depth map image. This way, a strategy is required to 
determine the heterogeneity of the depth CU. 

An idea similar to that presented in III.A is employed in 
the calculation of the depth CU gradient for each background 
CU in the depth map. The same five samples S1-S5 presented 
in Fig. 2(a) are used to calculate a sampled gradient (named 
here as SG). The value of SG is obtained simply by choosing 
the largest absolute difference between every pair of samples 
in S1-S5. Then, a threshold gradient GradThr is calculated 
according to (2) as the median of all the normalized SG 
values, just as previously described for AvgThr. As Fig. 2(d) 
shows, the median of the gradient distribution curve is usually 
a small value, which is expected because SG is only calculated 
for depth map CUs previously classified as background 
(generally composed of pixels with very similar values). 
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During the depth encoding process, the SG value of each 
background CU is calculated. At the end, the GradThr value is 
derived. During the texture encoding process, every SG is 
compared to GradThr. If SG is equal to or larger than 
GradThr, the corresponding texture CU is classified as a ROI 
within the background. The remaining CUs are classified as 
non-ROI within the background. 

C. Overall Complexity Reduction Algorithm 

The proposed early termination takes advantage of the 
hierarchical block partitioning structure of 3D-HEVC. As each 
CU can be further split into four equal-sized CUs until the 8×8 
size is reached, during the Rate-Distortion Optimization 
(RDO) process all possible splitting combinations are 
exhaustively tested and compared in terms of rate-distortion 
efficiency. In this work, the encoding computational 
complexity is reduced by identifying those situations in which 
this greedy solution is not needed or can be terminated without 
significant image quality degradation.  

The flowchart in Fig. 3 presents an overview of the early 
termination algorithm proposed in this work. For each CU 
larger than 8×8, the algorithm is applied in two steps. First, the 
foreground and background classification is performed based 
on the average depth calculation, as explained in III.A and 
shown in the SA > AvgThr conditional of Fig. 3. Then, the 
background CUs are classified as ROI or non-ROI based on 
the depth gradient, as explained in III.B and shown in the 
SG > GradThr conditional of Fig. 3, which determines if that 
CU is in a ROI or a non-ROI area, thus deciding if the 
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Fig. 2. (a) Pixels used for the calculation of SA and SG in depth CUs, 
(b) Distribution of SA in Balloons sequence, (c) Depth-based AvgThr 

threshold used to classify texture CUs as foreground or background, 

(d) Distribution of SG in Balloons sequence. 
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Fig. 3. Flowchart of the proposed early termination algorithm. 
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splitting can be early terminated. The average threshold 
calculation restricts dynamically the early termination to 
background CUs, whereas the gradient threshold calculation 
further restricts the application of the method to homogeneous 
background CUs, thus avoiding significant perceptual 
distortion as section IV will show. 

While encoding the depth map image, for each CU, one 
position in an array Avg of 256 elements (one for each 
possible average, considering 8-bit samples) is incremented, 
according to the calculated SA of that CU. Similarly, one 
position in an array Grad of 256 elements is incremented, 
according to the SG calculated for that CU. At the end of the 
depth map coding, each position in both arrays represents the 
number of times that average or gradient value occurs in the 
depth map image. Thus, the thresholds can be derived and 
each depth CU can be classified as foreground, ROI 
background and non-ROI background. 

While encoding the texture image, the co-located depth CU 
classification is used to early terminate the texture CU 
partitioning process. Foreground CUs and background CUs 
classified as ROI are encoded normally, following the RDO 
process. Oppositely, in background CUs classified as non-ROI 
the CU splitting process is terminated and the best splitting 
configuration found so far is chosen. 

IV. EXPERIMENTAL RESULTS AND COMPARISONS 

In order to evaluate the solution proposed in this work, a 
complexity and quality assessment was performed. Besides 
the encoding time reduction analysis, the evaluation aimed at 
identifying image quality degradation both objectively and 
subjectively. The subjective analysis is essential in this work, 
since it relies strongly on the idea that the viewer perceives 
quality loss differently in areas outside the ROI.  

HTM (version 16.2) [12] was used to encode video 
sequences in the MVD format with the Random Access 
configuration, QPs 25, 30, 35, 40 for texture and QPs 34, 39, 
42, 45 for depth maps, following the CTC specifications [13]. 
The eight video sequences listed in the CTC document were 
used in the tests, all of which were encoded using three regular 
and six synthesized views.  

A. Complexity Reduction and Objective Quality Evaluation 

Complexity reduction was calculated by measuring the 
encoding time of the modified HTM and comparing it to the 
encoding time of the original HTM. The objective quality was 
assessed in terms of Bjøntegaard Delta-PSNR (BD-PSNR), a 
metric that represents the average distortion in PSNR for a 
fixed bitrate. The BD-PSNR was calculated as the PSNR 
difference between the videos encoded with the modified and 
the original HTM. As the proposed method affects directly 
only the texture coding, the average BD-PSNR of all texture 
images (original and synthesized views) was calculated.  

Table II shows that the proposed method achieves an 
average complexity reduction of 22.6% when considering only 
the texture encoding process of 3D-HEVC, whereas the 
overall encoding complexity is reduced in 12.8%. In the best 
case (PoznanHall sequence), the encoding time reduction 

achieved 35.4% and 19.9% when considering texture and total 
encoding process, respectively. The smallest complexity 
reduction was noticed for the Newspaper sequence, in which 
the proposed strategy reduced texture and total complexity in 
13.5% and 6.9%, respectively. However, this was also the case 
in which the smallest quality degradation was noticed. The 
table also shows a very small objective quality degradation of 
0.07 dB, on average. The largest objective quality loss is 
noticed for the GTFly video sequence (0.28 dB), which is a 
computer graphics video sequence composed mostly of 
background area. Nevertheless, as the next subsection shows, 
the objective quality degradation of GTFly does not lead to 
quality loss perception, since these losses are outside the ROI. 
Although redundant with the BD-PSNR information, for 
comparison purposes Table II also presents the average 
BD-rate for each sequence. The values were calculated 
according to the CTC as the average between the video 
PSNR/video bitrate (BD-rate of video0 + video1), the video 
PSNR/total bitrate (BD-rate of video0+video1+depth maps) 
and the synthesized PSNR/total bitrate (BD-rate of 
synthesized views) [13]. An average BD-rate increase of 2.3% 
was noticed considering the eight sequences. 

B. Subjective Quality Evaluation 

The ITU-T Recommendation P.910 [14] was used as basis 
for the subjective test methodology employed in this work. 
The test was applied to 30 female and male volunteers 
between 18 and 44 years old, in an environment adjusted to 
allow viewing distance of 3 times the image height, viewing 
angle of 0º and low room illuminance (under 20 lux in front of 
the screen). The viewers watched all video sequences in a 
46-inch Samsung 3D LED TV with active shutter glasses and 
registered their evaluations in a handheld device. The 
evaluation metric used in the tests was the Mean Opinion 
Score (MOS) with the five following possible grades: (5) 
Excellent, (4) Good, (3) Fair, (2) Poor, (1) Bad. 

Each evaluator watched four times each sequence, as 
follows. First, (i) the original, uncompressed video sequence is 
presented. Then, (ii) the sequence encoded using the original, 
unmodified HTM encoder is presented and a rating is required 
to be registered for the second sequence within 10 seconds 
(using the first one as reference). After that, (iii) the original, 
uncompressed video is presented once again, and finally 
(iv) the sequence encoded using the modified HTM encoder is 
presented, which is also rated within 10 seconds (using the 
third sequence as reference). 

TABLE II.   ENCODING TIME REDUCTION AND OBJECTIVE EVALUATION 

3D Video 

Sequence 

Texture 

ΔTime 

(%) 

Total  

ΔTime 

(%) 

Average 

BD-PSNR 

(dB) 

Average 

BD-rate 

(%) 

Balloons 23.8 14.1 -0.07 2.1 

Kendo 21.0 11.7 -0.02 0.6 

Newspaper 13.5 6.9 -0.02 0.4 

GTFly 20.6 12.6 -0.28 8.4 

PoznanHall2 35.4 19.9 -0.06 2.6 

PoznanStreet 20.4 11.0 -0.02 0.5 

UndoDancer 21.5 12.7 -0.05 1.9 

Shark 24.8 13.8 -0.06 1.7 

Average 22.6 12.8 -0.07 2.3 
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Fig. 4 presents the subjective evaluation results for the 
eight video sequences. On average, the perceived quality 
degradation is around 0.14 MOS units when the proposed 
scheme is employed in the encoding process, which is very 
small when considering the full MOS range. The worst-case 
scenario was noticed for the PoznanHall sequence, which 
actually received low ratings even when the original HTM is 
used. Oppositely, the Newspaper sequence presented an 
unexpected result: for 76% of the viewers, the quality of the 
sequence encoded with the proposed scheme was equal to or 
better than the same sequence encoded by the original HTM, 
which resulted in a MOS increase of 0.33 units. Also, notice 
that a degradation of only 0.13 units was noticed for the 
GTFly sequence, which was the one with larger objective 
quality decrease (see Table II). This divergence between 
objective and subjective evaluations happens because GTFly is 
a computer graphics video sequence composed mostly of 
homogeneous background areas, which leads to the application 
of the early termination strategy more frequently. Differently 
from the viewers, the objective quality metrics does not 
differentiate between ROI and non-ROI areas, so that the 
PSNR loss does not correspond to the perceived degradation. 

C. Comparison with Related Works 

Since the finalization of 3D-HEVC, several works have 
been published aiming at reducing its complexity. To the best 
of the authors’ knowledge, none of these works explore the 
subjective quality perception of 3D scenes to tackle 
complexity issues. Besides, there are no works that present 
subjective quality evaluation results for their proposed 
methods, which precludes any comparison between this work 
and related works in terms of perceptual quality.  

Even though objective quality metrics are not completely 
fair mechanisms to evaluate the method proposed in this paper 
(which relies heavily on the concept of subjective quality 
perception), Table III presents a comparison with some of the 
best works found in the literature that focus on complexity 
reduction for 3D-HEVC texture coding. As separate results for 
texture encoding time are usually not shown in related works, 
the comparisons are limited to the overall encoding time 
reduction. Except for [5], Table III shows that this work 
presents the largest complexity reduction between all 
compared works. However, although [5] surpasses this work 
in terms of complexity reduction, its compression efficiency 
loss is much higher. The comparison in Table III shows that 
the proposed scheme is competitive with related works even 
when an objective evaluation is performed, which is not the 
focus of the strategy. Finally, it is important to notice that the 
scheme can be integrated with any other approach, increasing 
even more the level of complexity reduction. 

V. CONCLUSIONS 

This work presented an adaptive two-step complexity 
reduction scheme for the 3D-HEVC encoding process that 
takes advantage of depth map information to early terminate 
the splitting decisions of texture CUs outside the ROI. To 
determine whether a texture CU is within the ROI, each 
corresponding depth map CU is analyzed and classified as 
belonging to foreground, homogeneous background or 

heterogeneous background area. Only CUs within 
homogeneous background area are considered outside the 
ROI. Experimental results showed that the adaptive ROI-
based solution proposed in this work decreases the texture 
encoding time in up to 35.4% and in 22.6% on average, with 
negligible or non-perceived image quality degradation, 
measured in accordance to subjective tests. 
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Fig. 4. Subjective quality evaluation results measured in MOS. 

TABLE III.   COMPARISON WITH RELATED WORKS 

Work 
Total 

ΔTime (%) 
BD-Rate 

(%) 

Zhang [4] 3.8 0.43 

Tohidypour [5] 29.6 3.56 

Zhang [6] 4.1 0.10 

Song [7] 6.5 0.30 

Proposed 12.8 2.30 
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