
Nonlinear Least Squares Updating of the Canonical

Polyadic Decomposition
Michiel Vandecappelle, Nico Vervliet, and Lieven De Lathauwer

Abstract—Current batch tensor methods often struggle to
keep up with fast-arriving data. Even storing the full tensors
that have to be decomposed can be problematic. To alleviate
these limitations, tensor updating methods modify a tensor
decomposition using efficient updates instead of recomputing the
entire decomposition when new data becomes available. In this
paper, the structure of the decomposition is exploited to achieve
fast updates for the canonical polyadic decomposition whenever
new slices are added to the tensor in a certain mode. A batch
NLS-algorithm is adapted so that it can be used in an updating
context. By only storing the old decomposition and the new slice
of the tensor, the algorithm is both time- and memory efficient.
Experimental results show that the proposed method is faster
than batch ALS and NLS methods, while maintaining a good
accuracy for the decomposition.

I. INTRODUCTION

TENSOR decompositions are powerful tools for various

applications in machine learning and signal processing

[1]–[3]. Tensors are higher-order extensions of vectors and

matrices. They allow one to store and analyze large and higher-

order datasets with the use of compact and meaningful tensor

decompositions. As such, tensor tools are promising for big

data applications. Several algebraic and optimization-based

algorithms have been developed for tensor decompositions:

See for instance [4]–[6]. Recently, dedicated methods have

been designed for large, sparse, or incomplete tensors: See

for example [7]–[9] and references therein. Also, support for

structured and coupled tensor decompositions has been added

to tensor toolboxes such as Tensorlab [10], [11].

Mainly batch methods are used to handle higher-order data,

but they make one very important assumption: they assume

that the full tensor is available at the start and that it does

not change afterwards. As a result, these methods always

compute a decomposition for the whole tensor. Yet, in real-

time applications, tensors do not have to be immutable: the

tensor entries might change gradually (or abruptly) over time

Funding: Michiel Vandecappelle is supported by an SB Grant from the
Research Foundation – Flanders (FWO) and Nico Vervliet is supported
by an Aspirant Grant from the Research Foundation – Flanders (FWO).
Research furthermore supported by: (1) Flemish Government: FWO: projects:
G.0830.14N, G.0881.14N; (2) EU: The research leading to these results has
received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Advanced
Grant: BIOTENSORS (no 339804). This paper reflects only the authors’ views
and the Union is not liable for any use that may be made of the contained
information; (3) KU Leuven Internal Funds C16/15/059.

KU Leuven, Dept. of Electrical Engineering ESAT/STADIUS, Kasteelpark
Arenberg 10, bus 2446, B-3001 Leuven, Belgium; and Group Science, Engi-
neering and Technology, KU Leuven - Kulak, E. Sabbelaan 53, 8500 Kortrijk,
Belgium (Michiel.Vandecappelle@kuleuven.be, Nico.Vervliet@kuleuven.be,
Lieven.DeLathauwer@kuleuven.be).

or the tensor may grow (or shrink) in one or more modes.

A tensor might even be so large that a decomposition for the

full tensor cannot be computed at once, but must be built up

from the decomposition of its subtensors, e.g., slice by slice.

The available time to compute a decomposition may also be

limited. In such cases, one would like to update the tensor

decomposition using only the data that has changed. Such

efficient updating methods for tensor decompositions are cur-

rently being investigated [12]–[14]. While the decomposition

might lose some accuracy, the speed and memory efficiency

of updating methods may give them an advantage in practice.

In this paper, we exploit the structure of the Canonical

Polyadic Decomposition (CPD) of a tensor to obtain a Non-

linear Least Squares (NLS) updating algorithm. We apply the

framework for the computation of structured tensor decompo-

sitions proposed in [15], [16] to modify the CPD when new

tensor slices become available and old slices become outdated.

This yields a CPD updating method that is more efficient

than the existing batch methods, while maintaining a good

accuracy. Additionally, the method only has to store the old

decomposition and the new tensor slice in every updating step,

thus making it both time- and memory-efficient. The method

also admits arbitrary windowing strategies and can be used for

tensors that have a dynamic tensor rank.

We fix notation and give basic definitions in Section II. We

derive our method in Section III, discuss numerical experi-

ments in Section IV and conclude in Section V.

II. NOTATION AND DEFINITIONS

Scalars, vectors and matrices are denoted by lowercase (a),

bold lowercase (a) and bold uppercase letters (A), respec-

tively. We refer to tensors by using letters in calligraphic

script (T). An N th order tensor has N different modes. The

outer product of N vectors, denoted by v(1)
⊗ · · · ⊗ v(N),

is a natural extension of the outer product of two vectors.

The result is an N th-order tensor T of which each entry is

defined as follows: ti1...iN = v
(1)
i1

v
(2)
i2

· · · v
(N)
iN

. For simplicity

of notation, third-order tensors will be used throughout the

rest of the paper. A mode-n fiber tij:, ti:k or t:jk of a tensor

T ∈ R
I×J×K is a vector obtained by fixing all indices but

the nth. Likewise, a mode-(m,n) slice Ti::. T:j: or T::k is

a matrix obtained by fixing all but the mth and nth index.

The Frobenius norm is denoted by ||.||F and the Kronecker,

Khatri–Rao and Hadamard products of matrices by ⊗, ⊙ and

∗, respectively, where

A⊗B =

[

a11B a12B ···
a21B a22B ···

...
...

...

]

,A⊙B = [a1⊗b1,...,aR⊗bR] ,

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 693

and (A ∗ B)ij = aijbij . Herein A = [a1...,aR] and B =
[b1...,bR]. The mode-n product of a tensor and a matrix is

denoted by ·n and defined as (T ·n G)i1,...,in−1jin+1iN =
∑

n ti1,...,iN gjin , where the nth dimension of T is equal to

the number of columns of G. The transpose of a matrix M is

written as MT and its Moore–Penrose pseudoinverse as M†.

vec(X) denotes the vectorization of the matrix X, i.e., putting

the columns of X below each other and diag(x) forms a square

matrix that has x as its diagonal.

A third-order tensor has rank 1 if it is the outer product of

three non-zero vectors. The rank of a tensor is the minimal

number of terms that is needed to write the tensor as a linear

combination of rank-1 tensors. This leads to the CPD of

a tensor, which decomposes a rank-R tensor T as a linear

combination of R rank-1 terms:

T =
R
∑

r=1

ar ⊗ br ⊗ cr.

The vectors ar, br and cr are usually collected into factor

matrices A, B and C, as follows: A = [a1 . . . aR], and simi-

larly for B and C. The CPD is written as T = JA,B,CKR,

or as T = JA,B,CK if the rank R is clear from the context.

If the tensor T is unfolded to a matrix in the third mode by

combining all its mode-3 fibers as columns of a matrix T(3),

the CPD can also be written as T(3) = C(B⊙A)T [5].

III. NLS UPDATING

NLS algorithms have been shown to perform well for the

computation of the CPD of a tensor, as they are efficient

and very robust for more difficult decompositions [5]. In this

section, we convert the batch NLS algorithm to an updating

method that maintains most of these nice properties, while

being more time- and memory-efficient.

Consider at time k a third order tensor T ∈ R
I×J×K , with

rank-R CPD JX,Y,ZK. At time k + 1, a frontal slice M is

added to T in the third mode, as shown in Figure 1, forming a

tensor T (up). Instead of recomputing the entire CPD to include

the new slice, we want to perform an efficient update of the

decomposition, both in time and memory, to obtain the CPD

JA,B,CK of T (up). Assuming the model stays approximately

the same, the old factor matrices are used to initialize the

algorithm, but Z is extended with a new row cT
new: thus A =

X, B = Y and C =
[

Z

c
T
new

]

. cnew can be obtained from the new

slice by computing the least squares solution of (Y⊙X)cnew =
vec(M):

cnew = (Y ⊙X)†vec(M)

=
[

(Y ⊙X)T(Y ⊙X)
]−1

(Y ⊙X)Tvec(M)

= [(YTY) ∗ (XTX)]−1(Y ⊙X)Tvec(M). (1)

As R is typically small, computing the inverse of the R×R-

matrix [(YTY) ∗ (XTX)] is not expensive (and singularity of

this matrix points to an overestimation of R), while (Y ⊙
X)Tvec(M) can be obtained without explicitly forming the

Khatri–Rao product [17].

In the remainder of this section, we describe an NLS method

that can efficiently update an existing CPD when a new slice is

≈

Figure 1. Example of the tensor updating procedure. Left: the original tensor
is extended with an extra slice (red) in the third mode. Right: the CPD of
the tensor is updated by adding a new vector (red) to the factor matrix in the
third mode and modifying the existing factor matrices (pink).

added to the tensor, while only the factor matrices and the new

tensor slice are stored. The method builds on the framework

for the efficient representation of structured tensors described

in [15], [16]. We exploit the structure of the CPD to derive

efficient expressions for the objective function, gradient and

Gramians that are needed in the NLS method. Windowing

strategies are also discussed, as are dynamic tensor ranks.

The section ends with an analysis of the complexity of the

algorithm. The full algorithm is given in Algorithm 1.

A. Objective function

We compute the CPD JA,B,CK of the updated tensor T (up)

by minimizing the following objective function:

min
A,B,C

f = min
A,B,C

1

2
|| JA,B,CK − T (up)||2F .

We partition the factor matrix C as
[

C
c

]

, with c the last row

of C and rewrite f as

f =
1

2
||

q
A,B,C

y
− T ||2F +

1

2
|| JA,B, cK −M||2F ,

which can be expanded to

f =
1

2
||

q
A,B,C

y
||2F −

〈q
A,B,C

y
, T

〉

+
1

2
||T ||2F

+
1

2
|| JA,B, cK ||2F − 〈JA,B, cK ,M〉+

1

2
||M||2F .

One can note that 1
2 ||

q
A,B,C

y
||2F + 1

2 || JA,B, cK ||2F =
1
2 || JA,B,CK ||2F . The full tensor T is not stored during the

updating process for memory efficiency. Instead, we work with

its CPD approximation JX,Y,ZK, which is the best available

guess of T . Using this CPD approximation, we obtain the

following objective function:

f ≈
1

2
|| JA,B,CK ||2F −

〈q
A,B,C

y
, JX,Y,ZK

〉

+
1

2
|| JX,Y,ZK ||2F − 〈JA,B, cK ,M〉+

1

2
||M||2F . (2)

Equation (2) can be further simplified to avoid the construction

of full tensors by exploiting the structure of the CPD. First,

|| JA,B,CK ||2F = vec(JA,B,CK)Tvec(JA,B,CK)
= 1T(C⊙B⊙A)T(C⊙B⊙A)1

= 1T[(ATA) ∗ (BTB) ∗ (CTC)]1, (3)

where 1 is a vector of length R consisting of only ones. The

term 1
2 || JX,Y,ZK ||2F can be simplified in the same manner.

The inner product
〈q

A,B,C
y
, JX,Y,ZK

〉

can similarly be

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 694

written as 1T[(ATX)∗(BTY)∗(C
T
Z)]1. Because JA,B, cK =

Adiag(c)BT , both JA,B, cK and M are matrices and their

inner product is simply 1T[(Adiag(c)BT) ∗M]1.

B. Gradient and Gramian

For an NLS algorithm, efficient evaluations of the gradient

and Gramian of f are required [16]. Below, we give the

derivation of the gradient ∇f = vec
([

∂f
∂A

∂f
∂B

∂f
∂C

])

. The

expression for the Gramian is identical to the batch algorithm,

as shown in [5].

We derive the terms ∂f
∂A

and ∂f
∂C

of the gradient. The term
∂f
∂B

is obtained analogously to ∂f
∂A

. Only the first, second

and fourth terms of equation (2) are non-constant, so we

compute their derivatives with respect to A and C, using the

expressions from the previous subsection. For ∂f
∂A

, we find

∂

∂A

1

2
|| JA,B,CK ||2F = A[(BTB) ∗ (CTC)]

−
∂

∂A

〈q
A,B,C

y
, JX,Y,ZK

〉

= −X[(YTB) ∗ (ZTC)]

−
∂

∂A
〈JA,B, cK ,M〉 = −MBdiag(c),

leading to

∂f

∂A
= A[(BTB)∗(CTC)]−X[(YTB)∗(ZTC)]−MBdiag(c).

Analogously, we have

∂f

∂C
= C[(ATA) ∗ (BTB)] +

[

− ∂f

∂C
〈JA,B,CK,JX,Y,ZK〉

− ∂f
∂c

〈JA,B,cK,M〉

]

= C[(ATA) ∗ (BTB)] +
[

−Z[(XT
A)∗(YT

B)]

−vec(M)T(B⊙A)

]

,

as ∂f
∂C

can be partitioned into

[

∂f

∂C

∂f
∂ c

]

and the second and fourth

term of Equation (2) do not depend on c or C, respectively.

In the Gauss–Newton (GN) method, the Hessian of f is

approximated by its Gramian JTJ, where J is the Jacobian

of f . Using a limited number of Conjugate Gradients (CG)

iterations, the speed of the algorithm is increased and explicit

evaluation of the Gramian is avoided, as CG only needs

the Gramian-vector product JTJp, which can be obtained

efficiently by exploiting the block-structure of the Gramian.

Following Sorber et al. [5], if we write p = vec([P1 P2 P3]),
then (JTJp)1,1, the contribution of the diagonal 1, 1-block

of JTJ in JTJp, can be computed as vec(P1[(B
TB) ∗

(CTC)]). The contribution of the off-diagonal 1, 2-block of

JTJ, (JTJp)1,2, can be computed as vec(A[(CTC)∗(PT
2B)].

The contributions of the other diagonal and off-diagonal blocks

can be obtained analogously. In practice, a block-Jacobi pre-

conditioner [18] with diagonal blocks [(BTB) ∗ (CTC)]⊗ II ,

[(ATA) ∗ (CTC)]⊗ IJ and [(ATA) ∗ (BTB)]⊗ IK , where In

is the n × n-identity matrix, is also applied to the system to

improve the convergence speed.

C. Windowing and dynamic rank

Different weighting strategies can be followed to en-

sure that recent tensor slices influence the decomposition

more than older ones. The use of exponential or trun-

cated/rectangular windows are two popular windowing strate-

gies [13], [19]. The first one uses a weighting matrix L =
diag([λk, λk−1, . . . , λ, 1]), so that every old slice is scaled

down by a factor λ whenever a new slice arrives. The second

one only considers the last M slices for the update and thus

truncates the tensor by removing its outdated slices. Its weight-

ing matrix looks as follows: L = diag([0, . . . , 0, 1, . . . , 1]),
where L contains M ones. Both types can be combined to

obtain a truncated exponential window with weighting matrix

L = diag([0, 0, . . . , 0, λM−1, λM−2, . . . , λ, 1]).
Windowing can easily be incorporated into the updating

algorithm, by modifying the objective function:

min
A,B,C

|| JA,B,LCK − T (up)
·3 L||

2
F .

The factor matrices C and Z are thus replaced by LC and

LZ, respectively, where L is the matrix L without its last row

and column. If required, the factor matrix C can be recovered

from LC by left multiplication with L†, where L† is obtained

by inverting the non-zero entries of L. Otherwise, λLC can

directly be used for the initialization of the next updating step.

The updating method can easily be adapted to admit changes

of the tensor rank, as in every update, the rank of the new

CPD can be adjusted. To see this, note that the objective

function (2) and the gradients do not change if JX,Y,ZK
has a different rank than JA,B,CK. Determining when the

rank should change, is more difficult, however. See [20] for

an extended discussion.

Algorithm 1: NLS updating for CPD

Input : Old CPD JX,Y,ZKR, new slice M, windowing

matrix L, max number of GN iterations P , max

number of CG iterations Q

Output: Updated factor matrices A, B and C

1 Solve (Y ⊙X)cnew = vec(M) using Equation (1)

2 Decide on rank R′ of the updated CPD based on the

error ||(Y ⊙X)cnew − vec(M)||F (default R′ = R)

3 Concatenate cnew to Z to obtain the initializationr
X,Y,L

[

Z

c
T
new

]z
R

4 Remove column or add random column to the

initialization if R′ 6= R

5 Solve the NLS-problem

minA,B,C || JA,B,LCKR′ − T (up)
·3 L||

2
F with max P

GN iterations and max Q preconditioned CG iterations

per GN iteration, using the efficient evaluations in

Section III

6 Recover C from C = L†(LC) or store LC

7 Return the updated factor matrices A, B and C

D. Complexity analysis

A dogleg trust-region Gauss-Newton method is used to

compute the CPD updates. This method performs a maximum

of P iterations wherein the optimization step pp is computed

by solving JT
pJppp = −∇fp, where J is the Jacobian of

f . The latter system is solved by preconditioned CG with

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 695

Q iterations for which the complexity is dominated by the

evaluation of JT
pJppp. Each update thus requires a maximum

of P evaluations of f and ∇f and PQ evaluations of JT
pJppp

plus an additional number P ′ of evaluations of f for the trust-

region method. P ′ is typically equal to P .

For the objective function, it can be noted that
1
2 || JX,Y,ZK ||2F and 1

2 ||M||2F are constant and only have

to be computed once. Assuming R′ = R, the terms
1
2 || JA,B,CK ||2F and

〈q
A,B,C

y
, JX,Y,ZK

〉

can be com-

puted in O
(

R2 max(I, J,M)
)

flops, with M the length of the

window, using the simplification of equation (3). The last term

〈JA,B, cK ,M〉 can be computed in O
(

IJ
)

flops, totaling at

a complexity of O
(

2R2 max(I, J,M) + IJ
)

flops.

The gradient ∇f consists of three terms, ∂f
∂A

, ∂f
∂B

and ∂f
∂C

.

They can all be computed in O
(

2R2 max(I, J,M) + IJR
)

flops, totaling at O
(

6R2 max(I, J,M) + 3IJR
)

flops.

The Gramian-vector product JT
pJppp requires

O
(

3R2 max(I, J,M)
)

flops per CG iteration [5] and

thus O
(

3QR2 max(I, J,M)
)

flops per GN iteration.

Preconditioning adds three R × R matrix inversions

and Q matrix-vector products per GN iteration, totaling

O
(

3R3 +QR(I + J +M)
)

flops.

Summing these values for P iterations of the method

and adding the P ′ evaluations of f for the trust-region

method, leads to a total time complexity of O
(

(8P +3QP +
2P ′)R2 max(I, J,M) + (3RP + P + P ′)IJ + 3PR3 +
PQR(I+J+M)

)

, which for low rank tensors and a truncated

window is dominated by the term 3RPIJ . Note that this term

only depends on the dimensions of the new slice M and not

on the window length M .

The memory consumption of the proposed method is dom-

inated by the storage of the old and new CPD, which is

O
(

R(I+J +M)
)

and the new tensor slice, which is O
(

IJ
)

.

The gradients and Gramian-vector products that are used dur-

ing the execution of the method both require O
(

R(I+J+M)
)

memory as well. In contrast, storing the full (windowed) tensor

would require O
(

IJM)
)

memory.

IV. EXPERIMENTS

We compare the proposed method with batch algorithms

for the CPD and with the PARAFAC-SDT and PARAFAC-

RLST methods of Nion et al. [13]. All computations are done

in Tensorlab [11]. The batch algorithms simply compute the

CPD of the tensor formed by the slices in the window. These

algorithms are a nonlinear least squares (NLS) algorithm,

called cpd_nls, and an alternating least squares (ALS)

algorithm, called cpd_als, both available in Tensorlab. In

every step, they are initialized with the decomposition from the

previous updating step, with the aforementioned least squares

solution cnew = (Y ⊙X)†vec(M), corresponding to the new

slice, concatenated to the third factor matrix. All optimization

methods are limited to P = 1 iterations, while Q = 5 CG

iterations are allowed for the linear systems that are solved

during the algorithms. The experiments are performed on a

computer with an Intel Core i7-6820HQ CPU at 2.70GHz and

16GB of RAM using MATLAB R2016b and Tensorlab 3.0.

Initially, a rank-R tensor of dimensions 1000×1000×100 is

generated by sampling two factor matrices from the standard

normal distribution. The third factor matrix is sampled along

a third-degree polynomial with coefficients from the standard

normal distribution to obtain a model that varies slowly along

its third mode. The different experiments have R = 2, 4 and 6,

respectively. The tensor is perturbed by uniformly distributed

noise over the interval [−0.5, 0.5] with a signal-to-noise ratio

(SNR) of 20 dB. First, a full CPD is computed for the first fifty

mode-3 slices of the tensor. The other slices are then added

one by one to the tensor, after which the decomposition is

updated. A truncated exponential window of length M = 30
with forgetting factor λ = 0.9 is applied. Reported values are

medians across ten runs.

In Table I, the median required CPU-time to compute an

update using five different methods is shown. The five methods

are the batch NLS and batch ALS algorithms using only slices

from the truncated exponential window, i.e., using only the last

M slices of the tensor, and PARAFAC-SDT, PARAFAC-RLST

and the proposed updating method using the same window.

For these large tensors, the updating method achieves about

the same speed as PARAFAC-SDT and both are a factor 10
to 50 faster than the batch methods. For smaller tensors, the

updating method is slower than PARAFAC-SDT.

In Table II, the median fitting errors over the fifty updating

steps are shown. The error is here defined as the average error

for all tensor entries, where the slices are weighted using the

windowing matrix, i.e., the errors of older slices have a smaller

weight in the mean than those of newer slices. The accuracy

of the updating method is close to that of the batch methods,

while PARAFAC-SDT and PARAFAC-RLST perform a lot

worse, especially for larger values of R. As only one iteration

is performed by the updating method during the experiments

(P = 1 and Q = 5), higher accuracy can easily be traded

for longer execution times by increasing P and/or Q. Results

for P = 5 and Q = 25 are also included in Tables I and II.

It can be seen that increasing the number of iterations does

improve the results slightly. However, the execution time rises

linearly with the number of performed iterations. In Figure 2,

the errors of the different methods are plotted for the case

R = 6 and SNR = 50dB. The updating method achieves an

accuracy that is close to that of the batch methods. Increasing

the number of iterations improves the results marginally. The

error also remains relatively constant over the fifty updates, in

contrast to PARAFAC-SDT, for which the errors accumulate.

Summarizing, the error of the updating method is slightly

larger than the error of the batch methods, but this is com-

pensated by its superior speed. As only the old CPD and

the new slice have to be stored, the memory cost is lower

compared to the batch methods, which have to store the last

M tensor slices. For tensors with millions of entries or time-

sensitive applications, this can make an important difference in

the applicability of tensor methods. Although PARAFAC-SDT

has the same speed as the updating method for large tensors,

it consistently yielded a lower accuracy.

V. CONCLUSION

An NLS updating method was proposed for the CPD that

exploits its structure to execute a fast NLS update whenever

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 696

a new slice arrives. The batch NLS algorithm for the CPD

is adapted so that it can be used in an updating context. By

only using the previous decomposition and the new tensor

slice when it arrives, the updating method becomes both time-

and memory-efficient, while maintaining a good accuracy for

the decomposition. Efficient expressions are derived for the

computation of the objective function, gradient and Gramian. It

is also shown that arbitrary windowing strategies and changes

of the tensor rank can be handled straightforwardly. Finally,

the performance of the method is demonstrated on a large-

scale tensor. The algorithm is faster than batch ALS and NLS

algorithms for the numerical experiments, while maintaining

good accuracy, especially compared to PARAFAC-SDT and

PARAFAC-RLST. As only the new slice and the old factor

matrices are needed in the computation of the update, updating

is very memory efficient, making it applicable for large-
scale problems. A possible drawback of this memory-efficient

approach is that small latent trends in the data may be

ignored during multiple consecutive updates as these trends

are dominated by the current model in every step. This could

be mitigated by tracking some additional information, e.g., the

previous (few) slice(s) or an extra rank-1 term.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[3] A. Cichocki, C. Mandic, A. Phan, C. Caiafa, G. Zhou, Q. Zhao,
and L. De Lathauwer, “Tensor decompositions for signal processing
applications. From two-way to multiway component analysis,” IEEE

Signal Processing Magazine, vol. 32, pp. 145–163, 2015.
[4] A. H. Phan and A. Cichocki, “PARAFAC algorithms for large-scale

problems,” Neurocomputing, vol. 74, no. 11, pp. 1970–1984, 2011.
[5] L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based al-

gorithms for tensor decompositions: Canonical polyadic decomposition,
decomposition in rank-(Lr, Lr, 1) terms, and a new generalization,”
SIAM Journal on Optimization, vol. 23, no. 2, pp. 695–720, 2013.

[6] I. Domanov and L. De Lathauwer, “Canonical polyadic decomposition of
third-order tensors: Reduction to generalized eigenvalue decomposition,”
SIAM Journal on Matrix Analysis and Applications, vol. 35, no. 2, pp.
636–660, 2014.

[7] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the
curse of dimensionality using decompositions of incomplete tensors:
Tensor-based scientific computing in big data analysis,” IEEE Signal

Processing Magazine, vol. 31, no. 5, pp. 71–79, 2014.
[8] N. Vervliet and L. De Lathauwer, “A randomized block sampling

approach to canonical polyadic decomposition of large-scale tensors,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 2,
pp. 284–295, 2016.

[9] E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Parcube: Sparse
parallelizable tensor decompositions,” Machine Learning and Knowl-

edge Discovery in Databases, pp. 521–536, 2012.
[10] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion,”

IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 4, pp.
586–600, 2015.

[11] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De
Lathauwer. Tensorlab 3.0. Available online, March 2016. URL:
http://www.tensorlab.net.

[12] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning
and imputation for streaming big data matrices and tensors,” IEEE

Transactions on Signal Processing, vol. 63, no. 10, pp. 2663–2677, 2015.
[13] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the

parafac decomposition of a third-order tensor,” IEEE Transactions on

Signal Processing, vol. 57, no. 6, pp. 2299–2310, 2009.
[14] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incre-

mental tensor analysis: Theory and applications,” ACM Transactions on

Knowledge Discovery from Data, vol. 2, no. 3, pp. 11:1–11:37, October
2008.

Table I: Medians of the CPU-time (in ms) for a single update

using the new updating method, NLS and ALS batch methods

and PARAFAC-SDT and PARAFAC-RLST updating methods.

R 2 3 4 5 6

Update 1 60 81 104 140 169

P=1,Q=5

NLS 2375 4464 2557 3563 5522

ALS 910 1222 1400 1401 2352

SDT 48 71 98 136 172

RLST 570 607 623 775 822

Update 2 166 217 296 398 495

P=5,Q=25

Table II: Weighted mean errors for the new updating method,

NLS and ALS batch algorithms and PARAFAC-SDT and

PARAFAC-RLST. Medians over the fifty updating steps.

R 2 4 6

Update 1 1.22 · 10−2 1.20 · 10−2 1.09 · 10−2

P=1,Q=5

NLS 1.11 · 10−2 8.84 · 10−3 9.98 · 10−3

ALS 1.11 · 10−2 8.84 · 10−3 9.98 · 10−3

SDT 2.47 · 10−2 4.38 · 10−2 6.16 · 10−2

RLST 2.68 · 10−2 2.63 · 10−1 8.07 · 10−1

Update 2 1.16 · 10−2 1.18 · 10−2 1.06 · 10−2

P=5,Q=25

10 20 30 40 50
−25

−20

−15

−10

−5

Update

Error Upd. 1 (P,Q = 1, 5)Upd. 2 (P,Q = 5, 25)

Batch

SDT

RLST

dB

Figure 2. Weighted mean errors of the new updating method, ALS and NLS
batch methods and PARAFAC-SDT and PARAFAC-RLST updating methods
for R = 6 and SNR = 50dB on a decibel scale.

[15] N. Vervliet, O. Debals, and L. De Lathauwer, “Tensorlab 3.0 —
numerical optimization strategies for large-scale constrained and coupled
matrix/tensor factorization,” in Conference Record of the 50th Asilomar

Conference on Signals, Systems and Computers (ASILOMAR 2016),
November 2016.

[16] ——, “Exploiting efficient data representations in tensor decomposi-
tions,” Technical Report 16-174, ESAT-STADIUS, KU Leuven, Belgium,
2016.

[17] N. Vannieuwenhoven, K. Meerbergen, and R. Vandebril, “Computing
the gradient in optimization algorithms for the CP decomposition in
constant memory through tensor blocking,” SIAM Journal on Scientific

Computing, vol. 37, no. 3, pp. C415–C438, 2015.

[18] M. Benzi, “Preconditioning techniques for large linear systems: a
survey,” Journal of Computational Physics, vol. 182, no. 2, pp. 418–
477, 2002.

[19] M. Moonen and B. De Moor, SVD and Signal Processing, III: Algo-

rithms, Architectures and Applications. Elsevier, 1995.

[20] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determination,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp.
1751–1763, 2015.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 697

