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Abstract—Video capturing using Unmanned Aerial Vehicles
provides cinematographers with impressive shots but requires
very adept handling of both the drone and the camera. Deep
Learning techniques can be utilized in this process to facilitate
the video shooting process by allowing the drone to analyze its
input and make intelligent decisions regarding its flight path.
Fast and accurate on-board face detection for example can lead
the drone towards capturing opportunistic shots, e.g., close ups
of persons of importance. However, the constraints imposed by
the drones’ on-board processing power and memory prohibit
the utilization of computationally expensive models. In this
paper, we propose a lightweight two-stream fully Convolutional
Neural Network for face detection, capable of detecting faces
in various settings in real-time using the limited processing
power Unmanned Aerial Vehicles possess.

1. Introduction
Video shooting using Unmanned Aerial Vehicles

(UAVs), or drones, allows for capturing impressive shots,
but requires adept manipulations of both the drone and the
camera. Thus, capturing shots that are meaningful cine-
matography wise involves real-time control of the drone’s
course as well as the the camera’s angle at the same time.
There are also safety constraints to be taken into account,
such as privacy issues or safe landing sites among others.

Certain aspects of the video shooting process with
drones may be aided with Machine Learning techniques, as
nowadays professional as well as commercial drones contain
on-board processing units. Utilizing Machine Learning tech-
niques in the video shooting process can assist the capturing
of opportunistic shots, e.g., by first recognizing a person of
importance the drone could then fly closer and capture close-
up shots of that person. Drones with Graphics Processing
Units (GPUs) in particular can be aided by Deep Learning
techniques, as GPUs routinely speed up common operations
such as matrix multiplications.

One such aspect of the video shooting process is that
of face detection, as detecting and analyzing faces can lead
the drone to capture important moments. Face detection is
the first step to face and facial expression recognition and
tracking, among other tasks which can be greatly beneficial
to the quality of shots captured by the drone. For example, in
sports events, if the drone detects the face of an important
athlete, it can then be programmed to follow that person
while capturing opportunistic shots, such as the athlete
performing a remarkable feat or smiling after winning, etc.

Figure 1. An example of face detection in various poses and occlusions.
The bounding boxes show output of the trained CNN. The scores shown
are the result of the last convolutional layer of the face detection stream.

Recently, Convolutional Neural Networks (CNNs) have
been used for the task of face detection with great results
[1], [2], [3]. However, using such models on drones for real-
time face detection is prohibited by the hardware constraints,
such as limited processing power and low memory, that
drones impose. Fast execution time is of the essence for
models designated to run on-board, especially as drones
must also resolve other important issues such as obstacle
avoidance, re-planning, SLAM [4], etc. Utilizing large mod-
els such as the aforementioned ones for face detection on
drones becomes prohibitive by the low processing power
and memory present on drones. The fully connected layers
in the aforementioned models contribute the most to their
time performance as they consist of significantly more pa-
rameters than their convolutional counterparts. Thus, a fully
convolutional neural network, i.e., one that does not contain
fully connected components, is better suited for the task of
face detection when processing power is limited.

This observation comprises the intuition behind the de-
sign of our proposed fully convolutional model. Without
fully connected layers, the proposed model is very light-
weight and exhibits minimal computational complexity in
both the training and testing process, while attaining great
performance detection-wise. By utilizing multiple convolu-
tional layers, our model is able to produce heatmaps which
indicate both a) the existence or not of a face in the given
image and b) the dimensions of a detected face. This is
achieved by training a two-stream convolutional network
with a number of common layers. More specifically, four
layers of convolutions are applied to the input before the
network breaks off into two streams, each consisting of
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three layers and responsible for its assigned task (i.e., face
detection and size of face regression).

This paper’s main contributions include the proposi-
tion of a very light-weight model which consists of only
106.123 free parameters while still accurately detecting
faces of variable sizes, capable of performing both face
detection and face size regression at the same time by
utilizing a two-stream convolutional neural network. The
model is comprised by ten convolutional layers in total, with
each stream containing three layers, making the network
deep. However, the number of channels per convolutional
layer does not exceed 48, contributing to the model’s fast
performance. Furthermore, a novel training method which
involves the addition of progressively harder positive and
negative examples is proposed to train these lightweight
models effectively. Properly training a small and lightweight
network can lead to improved performance of the network
over larger architectures.

The proposed fully convolutional two-stream neural net-
work is evaluated on the challenging WIDER dataset [5],
which contains faces with high variations in size, pose,
occlusions etc, as well as on the FDDB dataset [6]. An
example of face detection where the faces exhibit various
poses and occlusions is shown in Figure 1. Because of
the network’s computationally light-weight components, the
model is suitable for on-board use on drones to achieve
very fast and accurate face detection and facilitate the video
shooting process.

The rest of this paper is organized as follows. Section 2
presents previous work related to the task of face detection.
Section 3 analyzes our proposed method, which is evalu-
ated in Section 4. Last, our conclusions are summarized in
Section 5.

2. Related Work

The work proposed by Viola and Jones [7], was the first
method to apply Haar-like features in a cascaded classifier
and made real-time face detection possible. Thereafter, the
main line of research was focused on the combination of
robust descriptors with classifiers. Much effort has been also
devoted to replacing Haar-like features with more compli-
cated ones like SURF [8], HOG, ACF [9], and NPD [10].
In [11], a joint-cascade method achieved excellent results
by introducing an alignment step in the cascade structure.
However, complex cascade methods increase the computa-
tional cost and often require pose/orientation annotations.
Another common approach to face detection is to deploy
a deformable parts-based model to model the information
between facial parts [12], [13]. Such methods, have critical
drawbacks as they lack in computational efficiency and are
prohibitive of real-time detection.

In recent years, Deep Convolutional Neural networks
(CNNs) have dominated many tasks of computer vision
as they, in most cases, significantly outperform traditional
methods. Along with the popularity of deep learning in com-
puter vision, deep learning approaches have been explored
for face detection tasks. A deep network named Alexnet

[14], which was trained on ILSVRC 2012 [15], rekindled
interest in convolutional neural networks and outperformed
all other methods used for large scale image classification.
The R-CNN method proposed in [16] generates category-
independent region proposals and uses a CNN to extract a
feature vector from each region. Then it applies a set of
class-specific linear SVMs to recognize the object category.
In [3], a cascade of CNNs was proposed which consists
of 6 CNNs and operates on multiple resolutions. In [1]
a deep CNN with three output branches for face/non-face
classification, face pose estimation and facial landmarks
localization was proposed. The model consists of three
convolutional layers each followed by a max pooling layer
and the last pooling layer is followed by a fully connected
layer, whose output comprises the input of the three afore-
mentioned branches. Recently, a face detector called DDFD,
[2], showed that a CNN can detect faces in a wide range of
orientations using a single model. The model accepts input
images of size 227× 227, and scales images up or down to
detect faces larger or smaller than this size respectively.

All the above methods use very complex networks hav-
ing more than 1M number of parameters that renders them
inappropriate for large-scale visual information analysis
or real-time face detection with constrained computational
power. In contrast, our proposed model is capable of running
on drones with limited processing power.

3. Proposed Method

3.1. CNN Architecture

We trained a fully convolutional neural network com-
prised of ten convolutional layers interspersed by dropout
layers. The architecture of the CNN is summarized in Fig-
ure 2, where each convolutional layer is accompanied by
a PReLU activation and a dropout layer. Table 1 displays
the number of trainable parameters, where conv accompa-
nied by an index denotes a convolutional layer and prelu
accompanied by the same index denotes the respective ac-
tivation layer. Our model has two output branches, one for
face/no face classification (layers conv#-det and prelu#-det)
and one for bounding box regression (layers conv#-reg and
prelu#-reg). A softmax function is applied to the output of
the last convolutional layer of the detection branch, which
produces probabilities for the face/non-face task. Channel-
wise parameters were learned for each PReLU layer. The
regression branch was trained with positive examples of size
32 × 32 to predict the width to height ratio of face examples
and was connected to the fourth layer of the CNN trained
for the task of face detection in a parallel manner as shown
in Figure 2. Training this network requires the optimization
of 106.123 free parameters in total.

In all our experiments, we start with a learning rate
of 0.001 for the first 200.000 iterations and then lower it
to 0.0001. The CNN was trained using Stohastic Gradient
Descent (SGD). The weights of the network were initialized
using the Xavier method [17].
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Figure 2. Architecture of the proposed two-stream convolutional face detector.

TABLE 1. CNN ARCHITECTURE

layer kernel filters output parameters
Common Convolutional Layers

conv1 3 × 3 24 30 × 30 × 24 648
prelu1 30 × 30 × 24 24
conv2 4 × 4 24 14 × 14 × 24 9216
prelu2 14 × 14 × 24 24
conv3 4 × 4 32 11 × 11 × 32 12288
prelu3 11 × 11 × 32 32
conv4 4 × 4 48 8 × 8 × 48 24576
prelu4 8 × 8 × 48 48

Bounding Box Regression Convolutional Layers
conv1-reg 4 × 4 32 5 × 5 × 32 24576
prelu1-reg 5 × 5 × 32 32
conv2-reg 3 × 3 16 3 × 3 × 16 4608
prelu2-reg 5 × 5 × 32 32
conv3-reg 3 × 3 1 1 × 1 × 1 144

Face Detection Convolutional Layers
conv5-det 4 × 4 32 5 × 5 × 32 24576
prelu5-det 5 × 5 × 32 32
conv6-det 3 × 3 16 3 × 3 × 16 4608
prelu6-det 3 × 3 × 16 16
conv7-det 3 × 3 2 1 × 1 × 2 288

3.2. Progressive positive and hard negative example
mining

The light-weight architecture of the proposed model
establishes the need for an effective training methodology,
to allow the model to accurately detect faces and correctly
localize the predicted bounding boxes. Intuitively, the model
should learn easier positive examples first, followed by pro-
gressively harder positive examples as the training process
proceeds and converges. As the network learns to accurately
detect easy examples, slightly harder ones are added to
the training dataset. The difficulty of a training example
is determined by the probability produced by the network
itself for this particular training image. We call this method
of adding positive examples to the training set progressive
positive example mining.

A similar intuition is followed for the purpose of col-
lecting negative examples. Hard negative examples must
be collected in conjunction to the positive ones to avoid
false positives and force the training process to differentiate
between faces and examples mistaken for faces. Given some

images which serve as negative examples, the network pro-
duces scores that represent the probability that these images
depict faces. The higher the score, the harder the example
is for the network to distinguish. Thus, such examples must
be added to the training set of the network first to guide
the training process. This process simulates hard negative
example mining.

Given an initial set of both positive and negative ex-
amples, a new set of negative and positive examples are
fed into the network and scores are produced for both sets.
False positives from the set of negative examples for which
the network produces a high score are considered as hard
negative examples and added to the dataset. Respectively,
false negatives from the set of positive examples for which
the network produces a high score are considered as easy
positive examples and appended to the dataset. The network
is trained with the newly augmented dataset and the process
is repeated iteratively.

The process of gradual training in stages, as described,
resolves a significantly important issue which was indeed
validated in practice: in the event of a training set being
unequally distributed between the two classes, a training
batch may contain little to no actual samples of one of the
classes. As a result, the network may be deprived of the
presence of samples of said class and, by extension, the
ability to identify between the two classes may be negatively
impacted.

3.3. Training dataset

The CNN was trained with positive examples extracted
from the AFLW [18], MTFL [19] and WIDER FACE [5]
datasets. The training images include real world examples
and are rich in with expression, pose, gender, age and eth-
nicity variations. The first consists of 21K images with 24K
face annotations, MTFL consists of 12K face annotations,
and WIDER FACE contains 32K images with about 390K
face annotations, with half of these intended for training.
The number of the training images was increased by ap-
plying horizontal mirroring (flip) so as to achieve better
generalization of the CNN.
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4. Experiments

4.1. System Analysis

The first output branch of our model contains the prob-
ability scores of the CNN for every 32 × 32 region in the
original input image with a stride of 2 pixels. As stated
previously, our model is fully convolutional and therefore
able to produce a classification heatmap of the given input.
Non-maximum suppression (NMS) is applied to eliminate
highly overlapped detection regions. Firstly, we sort all the
bounding boxes according to their score. Let max score be
the maximum score of all boxes and si the score of the ith

bounding box. If si < 0.95∗max score the bounding box is
removed. Secondly, we group the remaining bounding boxes
using OpenCV [20]. The final position of the bounding box
is calculated by averaging all the bounding boxes. The same
applies for the calculation of the final probabilty score.

In order to detect faces smaller or larger than 32 × 32
we scale the original image up or down respectively. An
image pyramid is built from the image to cover faces at
different scales. At each level i of the pyramid, the image
is resized by a factor of 2−i/step. Positive values of i scale
down the original image, while negative values allow the
detection of faces smaller than 32×32. In our experiments,
the step parameter is set to 8. However, even by setting
it to 4 it can provide formidable detection results. During
deployment of the CNN, we add an extra average pooling
layer to the classification output. It has been verified that
this layer reduces the number of false positives as only the
heatmap pixel coordinates having neighboring coordinates
with similar values are stored.

The second output branch of our model contains a map
with the regression scores of the CNN. The regression
layers are connected to the output of the 4-th convolutional
layer of the detection branch and therefore calculate the
regression scores for a volume of size 8 × 8 × 48. During
deployment, we multiply each dimension of the predicted
bounding box by the regression score in order to acquire
rectangular detection boxes.

4.2. Evaluation

The proposed detector is evaluated on the FDDB dataset
[6], which depicts of about 5 thousand faces. For evalua-
tion, the toolbox provided by [21] which includes corrected
annotations for the aforementioned benchmark was used.
Our model achieves a 91.7% recall rate on this dataset, as
shown in Figure 3. Recently several CNNs that are based
on VGG or on ResNet50 with a corresponding number of
parameters exceeding 1M have been proposed to deal with
small resolution faces using image pyramids. The resulting
models are very slow and cannot perform real-time face
detection even when state-of-the-art desktop GPUs are used,
making them unsuitable for use on drones due to the existing
hardware limitations.

The detector is also evaluated on the WIDER Face
Dataset [5]. The images are split into 61 event categories

containing 32K images in total which depict about 393K
faces. The dataset is split into training, validation and testing
sets, each containing 50%, 10% and 40% respectively of
the images corresponding to each event category. Figure 4
shows the precision recall curves for this dataset. Our model
(ts-CFD) achieves a recall rate of 75.2%, 71.9% and 49.3%
on WIDER easy, medium and hard partitions respectively.
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Figure 3. Comparison of ROC curves on the FDDB dataset. Our model
achieves a 91.7% recall rate.

The complexity of the competitive algorithms is very
large compared to the proposed network. Our model consists
of 106.123 whereas the fully convolutional AlexNet archi-
tecture proposed in [2] had 60 million parameters. Table
2 shows execution times for our model (denoted by ts-
CFD) and the aforementioned face detector (denoted by
DDFD) for RGB images of size 227×227. A variant of the
Faster R-CNN for face detection [22], based on the VGG-
16 architecture, is also compared (denoted by FRCNN).
These experiments were conducted on a mid-range GPU
with computational capabilities similar to those of on-board
embedded GPUs. The results indicate that our proposed
network is capable of processing 129 images per second,
significantly outperforming the other techniques.

TABLE 2. EXECUTION TIMES, FLOPS AND FRAMES PER SECOND
COMPARISON BETWEEN THE PROPOSED CNN, DDFD AND VGG-16

ARCHITECTURE.

DDFD FRCNN ts-CFD
Floating point operations 224B 634B 393M
Time (in seconds) 0.035108 0.132594 0.007749
Frames per second 28.5 7.5 129

5. Conclusions

A very fast and light-weight two-stream fully convolu-
tional face detector was proposed in this paper, capable of
predicting both the existence or not of a face in a given im-
age as well as the size of the predicted face. The model thus
encapsulates both face classification and face size regression
into a common framework with a significantly small number
of trainable parameters.
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(a) (b) (c)
Figure 4. Comparison of different face detectors on WIDER dataset for the (a) easy, (b) medium and (c) hard subset of faces.

The model was evaluated on the very challenging
WIDER dataset and found capable of detecting faces of
various sizes, poses and occlusions while maintaining very
low execution times. This is indicative of the fact that the
model is suitable for on-board use in drones with limited
processing power for real-time face detection.
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