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ABSTRACT

Estimation of the number of endmembers existing in a scene
constitutes a critical task in the hyperspectral unmixing pro-
cess. The accuracy of this estimate plays a crucial role in
subsequent unsupervised unmixing steps i.e., the derivation
of the spectral signatures of the endmembers (endmembers’
extraction) and the estimation of the abundance fractions of
the pixels. A common practice amply followed in literature is
to treat endmembers’ number estimation and unmixing, inde-
pendently as two separate tasks, providing the outcome of the
former as input to the latter. In this paper, we go beyond this
computationally demanding strategy. More precisely, we set
forth a multiple constrained optimization framework, which
encapsulates endmembers’ number estimation and unsuper-
vised unmixing in a single task. This is attained by suit-
ably formulating the problem via a low-rank and sparse non-
negative matrix factorization rationale, where low-rankness is
promoted with the use of a sophisticated ¢; /¢ norm penalty
term. An alternating proximal algorithm is then proposed for
minimizing the emerging cost function. The results obtained
by simulated and real data experiments verify the effective-
ness of the proposed approach.

Index Terms— NMF, sparse and low-rank, number of
endmembers, unsupervised unmixing.

1. INTRODUCTION

Big imaging data, such as hyperspectral images (HSIs) and
video, convey a sheer bulk of information and this makes
them valuable tools in a plethora of applications, with remote
sensing being probably the most prominent one [1]. One of
the HSI processing tasks that has attracted considerable atten-
tion lately is that of hyperspectral unmixing (HU). The main
goal of HU is to estimate the spectral signatures of the com-
ponents (called as endmembers) that form the spectral infor-
mation of HSIs, along with the fractions of their contribution
(called as abundances) at each pixel.

A first critical and indispensable step towards performing
unmixing is to uncover the true number of endmembers that
exist in a given hyperspectral scene. This challenging task
(also known as rank estimation or model order selection),
can be quite daunting in terms of the required computational
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burden. Several works have come into play for attacking this
problem which can be classified into two main categories:
a) information theoretic criteria based approaches and b)
eigenvalue thresholding methods. As far as the first class is
concerned, various approaches have been proposed differing
in the criterion used for penalizing an initially overestimated
number of endmembers e.g. Akaike’s Information Crite-
rion (AIC), Minimum Description Length (MDL), Bayesian
Information Criterion (BIC). On the other hand, methods
that belong to the second class include PCA based methods,
Neyman-Peyrson detection theory based methods etc., [2].

The estimate of the number of endmembers by the above-
mentioned algorithms is provided -at a second phase- as in-
put to unsupervised unmixing algorithms, whose goal is to
extract the endmembers’ spectral signatures along with the
abundance fractions of the pixels. A vast amount of works
have been published in the literature dealing with unsuper-
vised hyperspectral unmixing. The majority of them hinges
on the assumption that the underlying mechanism that de-
scribes the mixing process is linear. Indeed, the so-termed
linear mixing model (LMM) has been proven to be a reliable
approximation, although it neglects non-linear effects met in
real situations. In the framework of the LMM, there exist
both geometrical, [3], and statistical, [4], matrix factorization
based approaches for performing unmixing. Among the lat-
ter, nonnegative matrix factorization (NMF) based techniques
have exhibited a robust behavior offering promising results.

In this paper, we propose a multiple constrained NMF
method for simultaneously a) determining the number of end-
members, b) extracting the endmembers’ spectral signatures
and c) estimating the abundance values of the pixels. To ac-
complish this, we introduce a sophisticated low-rank promot-
ing term, which is based on the group-sparsity ¢ /¢ inducing
norm. This term penalizes both endmembers’ and abundance
matrices by enforcing joint sparsity on their columns. This
way, we go one step beyond just revealing the rank, since we
further encourage estimation of the true bases of the column
spaces of these matrices. At the same time, sparsity is fa-
vored on the abundance matrices, as it is physically meaning-
ful. All in all, endmembers’ number estimation and unmixing
is yielded jointly by the proposed sparse and low-rank NMF
approach. To the best of our knowledge, this is the first work
that encapsulates those two problems simultaneously in a sin-
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gle task. The newly formulated minimization problem is ef-
ficiently tackled via an alternating proximal Newton-type al-
gorithm. Results obtained on simulated and real data demon-
strate the favorable properties of the proposed algorithm.

2. PROBLEM FORMULATION

Let us assume that the pixels of the HSI are mixed according
to the linear mixing model (LMM),

Y =oW" +E (1)

where matrix Y € RiXK (with RiXK being the L x K di-
mensional nonnegative orthant of RX*%) consists of the K
pixels’ L x 1 spectral signatures (with L being the number
of spectral bands), @ € RiXN is the endmembers’ matrix
containing the spectral signatures of the N endmembers and,
W € ’Rf *N s the matrix containing the abundance frac-
tions of the pixels of the HSI. Finally, E € RE*X is additive
i.i.d Gaussian noise, which contaminates the pixels’ spectral
information.

As mentioned earlier, traditional hyperspectral unmixing
algorithms assume the number /N of endmembers known be-
forehand. Typically, this number N is provided by an inde-
pendent procedure which is applied before the unmixing pro-
cess. In this work, we depart from this rationale, accounting
in our methodology also for the lack of knowledge of the ac-
tual number of endmembers existing in a hyperspectral scene.
More specifically, we overstate the latent dimension N of the
matrix product in (1) and the LMM is subsequently expressed
as,

Y =®dW' +E, 2

where ® € RY*" and W € RE*" are now the endmem-
bers’ and abundance matrices respectively, with their relevant
dimension overestimated i.e. r > N.

Non-negative matrix factorization has been widely ap-
plied for attacking HU under the LMM, formulating the
problem as follows:

: . T2
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where || - || r denotes the Frobenious norm. Several other con-
straints may be included in the NMF cost function, giving rise
to disparate algorithms. All these constraints aim at capturing
inherent structures on the sought matrices such as sparsity,
structured sparsity etc, [5], stemming from physical proper-
ties e.g. spatial correlation. In the case of the rank overesti-
mated LMM of (2), it is obvious that this approach calls for
an appropriate regularization term which should be added in
(3). Concretely, such a term should penalize properly the rank
of the data representation matrix ®W7 .
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In light of the above, the ubiquitous tight upper bound of
the nuclear norm i.e.,

!
|@WT . = inf5 ([|@]fF + [|W]%) @)

has come into play in several works in the literature for im-
posing low-rankness in bilinear terms of the form ®W7'. The
minimization of this upper bound though favors low-rankness
by inducing smoothness on matrices ® and W, i.e., it pro-
duces matrices with linear dependent columns/rows. Since
HU is an instance of blind source separation, the outcome of
the above-mentioned bound minimization lies in the opposite
direction of what we actually desire. Ideally, we need an al-
gorithm that returns only distinct endmembers’ spectral sig-
natures and the respective abundance fractions’ of the pixels.

Considering this and the fact that only a subset of the end-
members in ® composes the spectral signature of each pixel
(i.e., W is expected to be sparse), we formulate HU as the
following sparse and low-rank NMF-type optimization prob-
lem,

-
. _ T2 12 12
polin Y — W IIF+5Z1 13ll5 + [lwillz

+ AW (5)

The first term in (5) performs the fitting between data matrix
Y and its bilinear representation PWT, the second term is a
novel low-rank promoting penalty and the last term in (5) is
the ¢; sparsity inducing norm. Parameters 6 and A; are the
regularization coefficients of the low-rank and sparsity terms
respectively. In a few words, (5) defines the cost function of
a multiple constrained optimization problem, which accounts
simultaneously for a) non-negativity of the factors ®, W, b)
low-rank on the product ®W7 and c) sparsity on the abun-
dance matrix W.

Remark 1: The introduced low-rank promoting term in (5) is
non-smooth and induces non-separability w.r.t. columns ¢,
and w; of ® and W respectively. Actually, it is tantamount
to applying the column-sparsity promoting {1 /{3 norm on the
augmented matrix | o, |.

From Remark 1, it can be easily understood that the min-
imization of the low-rank promoting term of (5) results to ze-
roing jointly columns of ® and W. This way, we can claim
that the overestimated dimension r decreases and the remain-
ing non-zero columns of the matrices constitute the bases of
the subspaces spanned by ® and W.

Next we present a proximal alternating minimization al-
gorithm for solving (5).

3. PROPOSED MINIMIZATION ALGORITHM

The minimization of (5) is by no means a straightforward
task. First, exact minimization w.r.t. matrices ® and W is im-
possible due to the induced non-separability of the low-rank
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promoting term (Remark 1). Second, joint non-smoothness
and non-separability of this term might lead us to irregular
points, i.e. to coordinate-wise minima that may not be local
minima of the cost function, [6]. In an effort to circumvent
those two impediments a) we use a smooth approximation of
the low-rank promoting term by adding a small constant 72
and b) we replace the smooth terms of (5) with quadratic ap-
proximate functions, [6].
Let us first denote the smooth part of (5) as,

1 s
F(@W) = SIY = @W 5453 /16,3 + [ will3 +
i=1
(6)

and with (W) = A{||W]||; its non-smooth separable part.
Considering the matrices ® and W as blocks in our problem,
each one of them may be updated by alternatingly minimizing
the following approximate cost functions,

WF —argmin(G,, W — WF1)

W>0
1 - T . .
+ gpvee (W= WH ) Higvee (W — Wi
a
+9(W) (N
and
®* —argmin(GL, & — <i>k_1>
$>0

L oo (@) ik vee (@ — 8"
+ ﬁvec( — ) q,vec( — ) ()
where Gk, = Vw (8", Wh 1), Gh = Va (" W),
iy = & 178" 4 DA H = WETWE + DFLand
DF is a r x r diagonal matrix with elements

1
\/Akz P )
ll#; I3 + [[wi 15 +n

Note that the small constant 1 added for smoothing purposes
in the introduced low-rank regularization term, averts zeros
values on the denominator of sz In addition, (-, -) denotes
inner matrix product, vec(-) is the vectorization operation and
k is the iteration index. Minimization of (7) as such gives rise
to a scaled proximal operator, [7], in the form

Gk
di; =

®

W = prox| ™ (Wi — @) 16 ) . a0
The computation of (10) has given way to disparate approx-
imate or iterative schemes (proximal Newton methods), [7],
since there exists no closed form solution for non diagonal'
ﬂ’{,v as in our case. Herein, we propose to apply an incremen-
tal strategy, [8], for approximately solving (7). More specif-
ically, a gradient step is first applied on the smooth part of

Note that for }AI’{N diagonal, the scaled proximal operator reduces to the
known proximity operator of the £1 norm i.e. the soft-thresholding operator.
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(7). The outcome of the gradient step is then provided as in-
put to the proximal operator of the non-smooth term i.e., the
{1 norm, whose output is finally projected to the feasible set.
Regarding the update of ®, it is a much simpler task due to
the absence of non-smooth terms. In general for the parame-
ter o in egs. (7), (8) it holds o* € (0, 1]. Overall, ® and W
are computed by using the following expressions,

~fo— A k— ~ —1
W =P s (ST((@k Mgt 1+D’H) 3" IY,A1)>
+

an

- A N -1 .
Bt = Prrr <(W’“TW’“ +D" 1) WkY) (12)

where ST (x, A) = sign(x)max(|z|—A) is the soft-thresholding
operator and PfoT is the projection operator onto Rf T,

Moreover, it can be easily shown that both %, and HY
~k—1 A
bound the true Hessians ie., Vi, f(® W 1) and

Vif (‘i’kil, WF), respectively, from above. Thus the
quadratic approximate functions are upper-bounds of the
original cost function. That said, the above-described scheme
resembles the block successive upper-bound minimization
framework of [6]. As stated earlier, and since we are dealing
with a constrained minimization problem, the updates for
® and W are projected to the feasible set thus accounting
for the nonnegativity constraint. In addition, problem (7) is
solved inexactly by the incremental strategy described earlier.
In view of these, for ensuring that the cost function decreases
at each step, an extrapolation step is needed and the final
estimates of ® and W at the kth iteration are obtained as

Wk = Wh=1 ¢ gk, <W’“ — Wk—l) R

ék _ ék_l

+ 8k (@k _ ék_l) 4
Typically, 8%, and p% are adjusted dynamically so that the
cost function’s sufficient decrease is guaranteed at each step.
Along this line, numerous schemes, known as line search
methods have come into play e.g. backtracking. Those
schemes affect the convergence and rate of convergence of
the algorithms to stationary points. The resulting algorithm is
given in Algorithm 1.

All in all, the proposed algorithm requires an overesti-
mate of the actual number of endmembers, which relaxes to a
large degree the need for knowing in advance the exact num-
ber thereof. Then, as the algorithm proceeds, columns of the
endmembers’ and abundance matrices ® and W are jointly
zeroed as a result of the ¢; /¢5 norm based low-rank promot-
ing term adopted. The remaining non-zero columns minimize
the reconstruction error while at the same time sparsity is in-
duced on the abundance matrix. Next we experimentally val-
idate the favorable characteristics of the proposed algorithm
i.e., its ability to uncover the true number of the endmem-
bers existing in a hyperspectral scene, along with performing
highly accurate blind unmixing.
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Algorithm 1 The proposed sparse and low-rank NMF end-
members’ number estimation and HU algorithm

T 570 &9 R0 20 20
Initialize W°, &, D°, 83, 8%,

Select 5, \1
fork =1,2,..., Max_iter
~k— ~k— ~ -1 ,p_
WE =P e (ST((@k B 1+D'H) $" IY),Al)
+

Wk = Wh-1 4 gkt (Wk _ Wk-—l)
~ ~ ~ -1 .
BF =P 1 ((W’“TW’“ +DF1) Wk’Y)
+
A - CLEE
v = ———9% i =1,2,...,r,DF = diag(d¥)

(%) ~k € ’
VIIes I3+I@F13+n?

Update 8%, 8%

end
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Fig. 1. Endmembers’ spectral signatures obtained by the pro-
posed algorithm on the simulated data experiment.

4. EXPERIMENTS

In this section we test the performance of the proposed algo-
rithm to a simulated and a real data experiment.

4.1. Simulated data experiment

In this experiment we aim at corroborating the competence
of the proposed algorithm in uncovering the true number of
endmembers along with estimating the spectral signatures of
the endmembers. To this end, we generate a 500 x 4 abun-
dance matrix whose elements follow a uniform distribution in
the interval [0,1]. This matrix is then sparsified by randomly
keeping only 30% of its elements. From the USGS spectral li-
brary, we select randomly 4 endmembers’ spectral signatures
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Fig. 2. Abundance maps of South Polar Cap obtained by the
proposed algorithm.

measured at L = 224 distinct spectral bands. Then, we lin-
early produce K = 500 simulated pixels’ spectral signatures
under the LMM framework. The pixel spectral signatures are
then contaminated with additive i.i.d. Gaussian noise with
standard deviation o = 1073.

Since the main premise of our approach is the develop-
ment of a blind unmixing method that exhibits robustness in
the absence of knowledge of the true number of endmem-
bers, we initialize the proposed algorithm with an overesti-
mate r = 10 of the actual number of endmembers. Both end-
members’ and abundance matrices are randomly initialized
according to the uniform distribution. Interestingly, the pro-
posed algorithm converges to abundance and endmembers’
matrices consisting of 4 non-zero columns, which is the same
as the actual number of endmembers that produced the data.
Moreover, it can be easily observed from Fig. 1, that the es-
timated endmembers’ spectral signatures present high degree
of similarity to the real ones. Hence, we can conclude that the
proposed algorithm is, in principle, capable of carrying out
the challenging task of simultaneously estimating the number
of endmembers and performing blind unmixing.

4.2. Real data Experiment

Herein our goal is to test and validate the proposed algorithm
on a real hyperspectral dataset. To this end we utilized the
OMEGA ORB0041 image (known as South Polar Cap) which
covers a large part of the south polar of Mars. Previous stud-
ies, e.g. [9], reported three principal chemical species on the
surface: H5O ice, C'O4 ice, and mineral dust.

To evaluate the performance of the proposed algorithm on
this real hyperspectral dataset, we suitably initialized the end-
members’ matrix with the outcome of the VCA algorithm,
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Fig. 3. (a) Eight endmembers’ signatures obtained by VCA on
South Polar Cap, (b)-(d) endmebers’ signatures estimated by
the proposed algorithm (blue lines) and VCA (red lines).

[10], which was run with an overestimate r = 8 of endmem-
bers. Asis shown in Fig. 3(a), the resulting by VCA endmem-
bers’ matrix contains correlated spectra, which is expected
from our prior knowledge i.e, that there exist 3 (instead of 8)
endmembers in this specific image. Since there exist no ref-
erence spectra of the actual endmembers’ spectral signatures,
for comparison purposes, we use the ones returned by VCA
which, this time, was run for the correct number of endmem-
bers. Notably, the proposed algorithm is proven to be capable
of estimating the actual number of the endmembers. More-
over, the estimated endmembers’ signatures (Fig. 3(b)-3(d))
for C'O4 and dust are quite close to those resulting by VCA,
while the opposite holds for the respective spectral signature
of the H5O. This is probably due to the small abundance val-
ues of H2O, as shown in Fig. 2(c). Additionally, as it can
be observed in Fig. 2, the resulting abundance maps are quite
close to those that have been published in literature, [9].

5. CONCLUSIONS

In this paper, the problems of a) estimating the number of end-
members and b) blind unmixing are formulated as a joint opti-
mization task. The ambitious procedure is carried out by first
formulating the problem via a novel ¢; /¢2 norm based low-
rank promoting term. Then, an alternating proximal New-
ton based algorithm is proposed for minimizing the emerging
cost function. Promising results obtained on simulated and
real data experiments corroborate the merits of this novel ap-
proach.
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