
An Elliptical-Shaped Density-Based Classification

Algorithm for Detection of Entangled Clusters

Stanley Smith, Mylene Pischella and Michel Terré
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Abstract—We present a density-based clustering method pro-
ducing a covering of the dataset by ellipsoidal structures in
order to detect possibly entangled clusters. We first introduce an
unconstrained version of the algorithm which does not require
any assumption on the number of clusters. Then a constrained
version using a priori knowledge to improve the bare clustering
is discussed. We evaluate the performance of our algorithm
and several other well-known clustering methods using existing
cluster validity techniques on randomly-generated bi-dimensional
gaussian mixtures. Our simulation results show that both versions
of our algorithm compare well with the reference algorithms
according to the used metrics, foreseeing future improvements
of our method.

I. INTRODUCTION

With the fast-increasing amount of data stored and conveyed

by modern applications the need to rely on efficient and

effective procedures to retrieve relevant information has gained

considerable concern. Cluster analysis is one such approach

designed to extract underlying structures from the data which

has garnered a lot of interest over the last decades. A wide

variety of methods and algorithms have been developed and

successfully applied in manifold applications including image

processing, document retrieval and data mining [1]. How-

ever, a major and persistent limitation to many clustering

techniques is the detection of merged or entangled clusters.

We thus propose a density-based algorithm which attempts

to partially circumvent this difficulty by enforcing the shape

of the clusters as ellipsoidal. We present a first version of

our method independent of the number of real clusters in

the data, then discuss a constrained improvement of the raw

classification. We evaluate the performance of our algorithm

and compare it with reference clustering algorithms, showing

that both versions yield conclusive results which can serve as

the baseline for further refinements.

The rest of the paper is organized as follows : in section

II we introduce some mathematical notations and give a brief

overview of the clustering problem, citing several well-known

existing classification methods from the literature. Section III

is devoted to the description and discussion of our elliptical

clustering technique. Section IV sets the assumptions and eval-

uation criteria used to conduct our simulations and presents

some comparative performance results between our algorithm

and standard clustering methods. General conclusions and

perspectives for our future work are outlined in section V.

II. NOTATIONS AND RELATED WORK

A. Mathematical notations and definition of clustering

We first set some mathematical notations which are used

throughout the paper : scalars are be written using lower-

case letters ; vectors are be written using lower-case bold

letters ; matrices are written using upper-case bold letters,

and the transpose operation by a T -exponent (e.g. AT ); finite

sets is written using upper-case cursive letters ; the cardinal

and complement of a set are written using the absolute value

notation | · | (e.g. |A|) and an overline (e.g. A), respectively.

We formally introduce the clustering problem as follows :

given a dataset D of N multidimensional observations denoted

by xn, where n ∈ {1, · · ·N}, we aim at classifying the

dataset in K meaningful clusters Ck, k ∈ {1, · · ·K}, such

that all members of any class are more similar to each other

than elements taken from different classes. For the sake of

simplicity we shall consider that the data points are D-

dimensional real vectors, xn ∈ ❘
D, which allows us to rely on

metrics such as the euclidean distance to evaluate similarity

between observations.

B. Properties of clusterings and existing algorithms

From a general point of view clustering techniques can

usually be characterized by three properties. First, the number

of clusters K required to sort the data may be known in

advance or used as a constraint on the algorithm, but may

also be a result of the classification process itself. Besides,

one may consider by classifying the observations a partitioning

of the dataset D, meaning that each xn exclusively belongs

to a single cluster Ck. Fuzzy clusterings on the other hand

allow data points to belong to several classes with different

membership degrees. Finally, some clustering methods are

capable of detecting and handling the presence of outliers,

which correspond to irrelevant observations. We here define

outliers with respect to a clustering as observations which do

not belong to any cluster, i.e. xn ∈ ∩
K
k=1Ck.

More specific distinctions can be made between clustering

techniques based on the underlying procedure used to perform

the classification. Some algorithms aim at optimizing an objec-

tive cost function, the absolute minimum of which corresponds

to the best clustering of the dataset. One of the most widely-

used representative of this class of algorithms is k-means [2].

k-product [3] is another such optimization-based clustering
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algorithm designed to find the centroids
(

{µk}k∈{1,···K}

)

of

the clusters. Its utility function is defined as

JKP

(

{µk}k∈{1,···K}

)

=
N
∑

n=1

K
∏

k=1

‖ xn − µk ‖
2 (1)

and has been proved to be convex in one and two dimensions.

Density-based clustering algorithms represent classes as dense

regions of the observation space. DBSCAN (Density Based

Spatial Clustering of Applications with Noise) [4] and OP-

TICS (Ordering Points to Identify the Clustering Structure) [5]

are popular members of this class of methods. Other famous

techniques such as the E-M (Expectation-Maximization) algo-

rithm [6] adopt a probabilistic description of the data and make

use of statistical tools to classify it. Hierarchical clusterings

rely on iteratively merging or splitting clusters [7]. Many other

approaches and refinements exist in the literature [8].

Clustering methods may usually encounter two major limi-

tations. First, the classification produced by a given algorithm

can be very sensitive to its initialization configuration, thus

requiring several runs to extract the best possible result. Such

approaches relying on the minimization of non-convex func-

tions like k-means are typically concerned with this difficulty.

Another persistent drawback of classification procedures is

that they often fail to detect and handle entangled clusters.

We attempt to address the latter with our proposed algorithm.

III. THE ELLIPTICAL CLUSTERING ALGORITHM

We now introduce our elliptical clustering algorithm, a

density-based classification technique which performs a cov-

ering of the dataset by elliptical-shaped structures. In its

original version this classification technique does not require

any assumption on the number of real classes, but it also

admits a constrained version which aims at improving the

final clustering by a post-processing of the raw result. While

by construction particularly suited for gaussian mixtures of

comparable variances, it can be applied to any type of dataset.

In the first two sections we describe the underlying concepts

motivating the elliptical clustering as well as the classification

process, then in section III-C we address how the knowledge of

the number of real clusters K can be enforced in the resulting

clustering. Section III-D provides a complete overview of the

algorithm by means of a pseudo-code.

A. The weighted density function

The elliptical clustering method is based on a representation

of clusters as dense regions of the observation space. Similarly

to the DBSCAN algorithm, it alternates two steps : firstly

detecting a new cluster, then expanding it, until all or enough

data points have been processed. However, while DBSCAN

relies on local density criteria, we here adopt a more global

point of view and represent the overall density of the dataset

by means of weighted hyperbolic tangent kernel functions.

The resulting density estimation function, denoted by ρw(x),
is defined as

ρw(x) =
1

∑N

n=1 wn

N
∑

n=1

wn

(

1− tanh
(

‖ xn − x ‖2
))

(2)

where x is a D-dimensional vector and w a N -dimensional

weight vector whose each entry wn is associated with obser-

vation xn. The function ρw(x) takes maximal values for all x

lying in regions with a high concentration of observations,

and cancels when x is far enough from the data. In the

context of probability distribution mixtures, these maxima

correspond to the modes of each of the component of the

mixture, which for unimodal symmetric probability densities

such as gaussian distributions coincide with the mean value,

provided that the components are separated enough so that

their respective modes are still modes of the overall mixture.

Hence, by finding all the maxima of the density function, one

can in principle recover the centroids of all the clusters in the

dataset. Since in general extracting the maxima of a density

function such as ρw in one row is analytically impossible, we

rather try to find them successively, so that a new cluster is

extracted at each iteration of the algorithm. Computing the

gradient of (2) with respect to x, we find that the locations

of the maxima obey an auto-coherent equation that we solve

iteratively. Given an estimation x
(c) of the location of one

of the maxima of ρw computed at the current iteration c of

the maximization process, the updated estimation at the next

iteration c+ 1 is given by

x
(c+1) =

∑N

n=1 wnCn(x
(c))xn

∑N

n=1 wnCn(x(c))
(3)

where Cn(x) = 1−
(

tanh
(

‖xn − x‖2
))2

. Since the variations

of the density function only occur close to the data points, a

random observation point is chosen as the initial estimation

x
(0). The maximization step stops when the variations of x(c)

with respect to the iteration counter c are small enough, and

the resulting vector, denoted by x
∗, defines the centroid of

the new cluster to be expanded. As the starting point to find

a cluster is to randomly pick a data point to initialize the

maximization step, it is necessary to find the members of a

given cluster as soon as its centroid has been extracted in such

a way that all observations found to be part of this cluster can

be removed from the possible initialization set for the next

centroid detection step.

B. Elliptical-shaped classification

In an attempt to circumvent the tendency of density-

based algorithms to merge entangled clusters, we constrain

the classes generated during the expansion step to have

ellipsoidal shapes. The motivation behind this choice is to

encapsulate enough data points in a simple geometrical shape

so that the cluster is well-represented, without assimilating

points that would possibly belong to another class, hence

giving the algorithm the ability to better distinguish entangled

clusters. We thus need to specify both the orientation or

principal axes {ud}d∈{1,··· ,D} and the corresponding semi-

axes {ad}d∈{1,··· ,D} to fully parametrize the cluster. In a

D-dimensional space, D − 1 orthonormal direction vectors

are chosen, the last one being imposed by orthogonality. A

possible choice for the first direction is the vector defined by
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the initial and final estimations of the centroid of the current

cluster, i.e. u1 = (x(0)−x
∗)

‖x(0)−x∗‖2 , so that if D = 2 the orientation

of the ellipse is systematic. The extension of the algorithm in

higher dimension would require additional arbitrary choices

and is under study. Then, starting from the centroid x
∗ and

for each previously defined direction ud, the corresponding

semi-axis ad is obtained by sequentially searching for the

closest point in that direction for which either a minimum

of the density function is found, revealing the presence of an

entangled cluster, or a given threshold value is reached. This

critical value, denoted by ρth, serves as a maximal extension

that an isolated class can achieve, and is adaptative of the inner

density of the cluster under consideration, which is related

to the amplitude of its maximum, ρw(x∗). We express this

threshold value as ρth = ρw (x∗) (1 − Th), where Th is an

external parameter strictly lying between 0 and 1. Th acts as

a balance between the typical size of the ellipsoids found by

the algorithm and its ability to split partially merged clusters.

In our applications the value 0.7 has shown to be a good

compromise, but specific applications where for instance a

priori knowledge on the relative positions of the clusters is

available would lead to other choices. We then express the

semi-axis ad as

ad = min (sup(I), inf{t ∈ I\{0}|ρ̃′
w
(t) = 0}) (4)

where I = {t ∈ ❘+|ρ̃w([−t t]) ⊂ [ρth ρ̃w(0)]} and ρ̃w(t) =
ρw (x∗ + tud). We finally define the cluster C as the set of

data points lying inside the generated ellipsoid

C = {xn ∈ D|(xn − x
∗)TPT

A
−2

P(xn − x
∗) ≤ 1} (5)

where P = (u1, · · · ,uD) is the orthogonal change of basis

matrix induced by the orientation chosen for the ellipsoid, and

A is the diagonal matrix whose entries are the semi-axes,

Aij = aiδij with δij the Kronecker delta. The list of possible

initialization points for the next centroid detection step is then

updated by removal of the identified class members.

The weight vector w introduced in (2) allows to tune the

relative contribution of each data point to the overall density.

It is used to provide a higher weight to the clusters that have

not yet been identified, which leads to a better detection of

entangled classes. We then choose wn = 1
|Ck|

if xn belongs to

the class Ck, and wn = 1 if xn does not belong to any class

yet. By convention, if a given point is found to belong to

several classes, its weight is computed similarly based on the

cluster with greater cardinality. The weight vector is updated

as soon as the membership of the current cluster is established

using (5), so that data points that have not been classified

yet contribute more and more to the density profile. Adding

this weight vector may however generate spurious clusters due

to the remaining points neglected by the elliptical clustering

in the class expansion process. Besides, as more clusters are

discovered the set of unclassified points tends to get sparser,

leading also to the apparition of few-membered, irrelevant

classes of outlier observations. These two cumulative effects

result in an overestimation of the number of clusters in the

dataset. This is illustrated in Fig. 1 on a two-dimensional
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Fig. 1. Top : Elliptical classification of two entangled bi-dimensional gaussian
distributions with weights (0.5, 0.5), means (0, 0), (2, 0) and spherical
covariance matrices 0.7 and 0.5, respectively. Bottom : Density profile ρw
in the x direction at the initial state (black curve) and after the extraction of
the fist cluster (blue curve) using the density threshold ρTh

(red line).

gaussian mixture with two components. The black and red

ellipses on the top plot correspond to irrelevant and mean-

ingful clusters, respectively. The bottom plot shows how the

extraction of the right component and update of the weight

vector allows both an easier detection of the second class and

the emergence of excess clusters. A first solution to prevent

the algorithm from generating residual clusters is to impose

beforehand the ratio of points to be clustered, and use it as a

stopping criterion for the whole classification procedure. We

denote η this second parameter of the algorithm. Increasing η

lowers the probability of missing a real class in the dataset,

but at the cost of a greater amount of residual clusters and

computation time. As this paper is utterly concerned with the

accuracy of our method a value of 0.95 was chosen in all

simulations.

C. Post-processing of the elliptical clustering

The raw classification returned by our elliptical algorithm

can be thought of as a covering of the dataset by K ′ ellipsoidal

structures. A first immediate preliminary step to reduce the

number of classes is to remove those clusters that only have

a single member, and which actually correspond to outlier

observations. Then, we enforce the number of real classes K

as a contraint to further reduce the number of clusters. Among

all pairs of clusters having a non-empty intersection, we select

the one which achieves the maximum intersection relatively to

the size of the smaller cluster.

(k1, k2) = argmax
k∈{1,···K′}

k′>k

(

|Ck ∩ Ck′ |

min (|Ck|, |Ck′ |)

)

(6)
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The most irrelevant cluster Ck∗ is then defined as the smaller

one in the resulting pair

k∗ = argmin (|Ck1
|, |Ck2

|) (7)

Finally, we remove Ck∗ by redistributing its members among

all clusters that share a non-empty intersection with it. Let

Vk∗ = {k ∈ {1, · · · ,K ′}\{k∗}|Ck∗ ∩ Ck 6= ∅} be the

corresponding class labels, and dM (xn, Ck) the Mahalanobis

distance between observation xn and class Ck, defined as

dM (xn, Ck) = (xn − xk
∗)

T
Σ

−1
k (xn − xk

∗) (8)

with xk
∗ and Σk the centroid and covariance matrix of Ck

respectively. We assign to each class Ck of Vk∗ all data points

of Ck∗ for which the minimum of the Mahalanobis distance

with respect to all other classes of Vk∗ is achieved. We can

thus write the update of cluster Ck as

Ck ← Ck ∪ {xn ∈ Ck∗ |argmin
k′∈Vk∗

dM (xn, Ck′) = k} (9)

These two steps of detection of residual clusters and re-

assigment of the corresponding data points is repeated until

either K ′ = K, or there are no more non-empty intersection

between any pair of clusters. Finally, a last optional phase

consists in classifying the outlier observations to the remaining

clusters replacing Ck∗ and Vk∗ by ∩K′

k=1Ck and {1, · · · ,K ′}
in (9), respectively. An important point to mention is the fact

that even after the above pruning phase, the algorithm may

still overestimate the number of clusters. Moreover, if the raw

classification of the algorithm is such that K ′ < K, no further

processing is performed. The knowledge of K is then rather

used as a guide to improve the bare elliptical classification than

as an absolute requirement. As a matter of fact, in situations

where the true number of classes is out of reach, a mere

estimation of K may be enough for the algorithm to yield

satisfying results.

D. Pseudo-code and additional comments

The overall proceeding of the elliptical clustering is sum-

marized in Algorithm 1 as a pseudo-code. The post-processing

phase can be considered to begin with the suppression of

single-element clusters, but this step can also be included in the

unconstrained version of the algorithm since it does not require

the parameter K. The outliers classification step is optional as

well. Because the observations used as the initial points for

the maximization of ρw are chosen randomly, the resulting

classification is non deterministic, and thus one may have

to perform several runs in order to achieve the best possible

clustering accessible by the algorithm.

IV. PERFORMANCE EVALUATION

A. Clustering validity metrics

The performance of the proposed algorithm is evaluated

comparatively to an ideal, gold standard classification of

the dataset using metrics based on the so-called confusion

matrix. Given the target classification C = {Ck}k∈{1,···K}

and the clustering under evaluation C′ = {C′k′}k′∈{1,···K′}

Algorithm 1 Pseudo-code of the elliptical clustering algorithm

function elliptical clustering(η, Th, (K))

// Phase 1 : elliptical clustering of the data

K ′ ← 0, w← (1, · · · , 1)
while | ∪K′

k=1 Ck| < N × η do

choose x
(0) as a random xn in ∩K′

k=1Ck
find x

∗
K+1 by iteratively maximizing ρw(x) using (3)

for d = 1 · · ·D do

choose ud orthogonal to {u1, · · ·ud−1}
compute ad using (4)

end for

define CK′+1 using (5)

update w and increment K ′

end while

// Phase 2 : pruning of irrelevant clusters

add all single-element clusters to the set of outliers

while K < K ′ and ∪K′

k=1Vk 6= ∅ do

select the cluster to remove using (6) and (7)

reassign members of the removed cluster using (9)

decrement K ′

end while

// Phase 3 : classification of outliers

reassign outlier points using (9)

end

the K × K ′ entries of the confusion matrix are defined as

mkk′ = |Ck ∩ C
′
k′ |. Starting from this general tool a wide

variety of clustering evaluation criteria can be derived. For

our performance tests we selected two indices, namely the

normalized Mirkin index and the Variation of Information.

The Mirkin index [9] is a pair-counting based metric mea-

suring the number of misclassified data points. It is given by

MC,C′ =
K
∑

k=1

|Ck|
2+

K′

∑

k′=1

|C′k′ |2−2
K
∑

k=1

K′

∑

k′=1

|Ck∩C
′
k′ |2 (10)

The resulting expression is always positive and null if the

two classifications are equal. An additional normalization of

the Mirkin index can be achieved in order to grant it the N -

invariance property, meaning that the index is dependant on

the relative proportions of the classes and not directly on the

number of data points N . This normalized version is obtained

by dividing the bare Mirkin index by N2 [10].

The Variation of Information [10] is an information-based

measure which evaluates the gain and loss of uncertainty about

a given classification under the assumption that the other is

known. Formally speaking, it is defined as

V IC,C′ = H(C|C′) +H(C|C′) (11)

where H(C|C′) = −
∑K

k=1

∑K′

k′=1
m

kk′

N
log2

(

m
kk′

mk·

)

is the

conditional entropy of classification C knowing classification

C′ and mk· =
∑K′

k′=1 mkk′ . The Variation of Information is

zero if and only if both classifications are equal (up to a

permutation in the class labels) and is naturally N -invariant.
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Fig. 2. Performance of the constrained elliptical clustering and several other
clustering algorithms

B. Simulation assumptions and results

To evaluate the quality of the classifications produced by

our algorithm we have generated 200 random sets of 1000
two-dimensional sample points using gaussian mixture distri-

butions for each value of the mixture component number K

from 1 to 10. The weights, means and covariance matrices of

each gaussian component are randomly chosen according to

a uniform distribution for each independant parameter. The

means range from −10 to 10 in each direction, and the

maximum value for the covariances is set to 1. The indices are

averaged over all datasets having the same number of classes.

Fig. 2 shows the performance curves for k-means, k-

product, E-M and the constrained elliptical clustering. For

these initialization-dependant algorithms the best result over

100 runs have been extracted before the averaging. Both plots

tend to show that our algorithm provides better classification

results than k-means and k-product. We also note how similar

the performance curves of the elliptical and E-M algorithms

are, though E-M seems slighty better. Since for gaussian

mixtures the probability distribution components actually are

of ellipsoidal shape, it is indeed expected that both approaches

are particularly well-suited for this class of datasets.

Fig. 3 depicts the normalized Mirkin index obtained for

the unconstrained elliptical algorithm and DBSCAN for two

sets of its parameters Eps and MinPts. While DBSCAN

tends to yield better clusterings for a small range of K values,

it then considerably drifts in accuracy. This is because as

the number of clusters increases while the observation space

range is fixed, more and more entangled classes appear and

DBSCAN considers them as single entities. The bare elliptical

method on the opposite overestimates the number of classes

but doing so carries more relevant information about the actual

clustering of the data. This also accounts for the latter having

a non-zero Mirkin index in the trivial case K = 1.
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Fig. 3. Performance of the unconstrained elliptical clustering and DBSCAN
with MinPts = 5

V. CONCLUSION

In this paper we have introduced a density-based clustering

approach relying on ellipsoidal-shaped clusters to improve the

detection of entangled classes. Our simulations have shown

that our algorithm yields comparable performance with several

standard algorithms in both its constrained and unconstrained

versions. This preliminary work gives a first insight on the

possibilities of our method and foresees future improvements

as well as further comparisons on other types of mixtures and

datasets with more advanced existing clustering techniques.
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