2017 25th European Signal Processing Conference (EUSIPCO)

Order Adaptive Golomb Rice Coding for High
Variability Sources

Adriana Vasilache
Nokia Technologies, Tampere, Finland
Email: adriana.vasilache @nokia.com

Abstract—This paper presents a new perspective on the adap-
tive Golomb Rice codes that is especially suitable for sources
having a highly variable distribution in time. Instead of adapting
the Golomb Rice parameter, the encoder adapts the order of
the symbols based on a count of occurrences measure. The
proposed order adaptive Golomb Rice method is compared
against different versions of adaptive arithmetic encoder at the
encoding of real audio data stereo parameters. The proposed
method shows very fast adaptability in the presence of rapidly
changing data with respect to the initial data statistics.

I. INTRODUCTION

The encoding of integers is very present in the current media
encoders when it comes to efficiently transmitting the code-
vector indexes [1], [2]. The entropy encoding is mostly done
by Huffman encoding, arithmetic encoding or Golomb Rice
encoding. The efficiency of the arithmetic coding, combined
with the use of contexts and an adaptive mechanism [3] is
rarely matched by the Huffman encoder or the Golomb Rice
encoder. However, the latter two compensate with a lower
complexity of encoding and decoding and, depending on the
data statistics, their efficiency may be enough. In addition,
the use of Golomb Rice codes enables the encoding of a
source with unknown number of symbols and have even lower
encoding complexity and storage requirements.

In this paper we study a practical case, the encoding of
stereo level parameters, where the statistics of the data is
highly variable and the adaptation mechanism provided by the
arithmetic coding is not versatile enough. The use of multiple
contexts could increase the encoding efficiency, but at the
same time it would increase the encoding complexity and the
table storage requirements. As alternative we propose a novel
approach of adaptive Golomb Rice coding which adapts very
fast to the data statistics changes and has virtually no storage
requirements.

After this introduction we will present the existing approach
of using adaptivity for Golomb Rice encoding followed by the
description of several source variability measures. The fourth
section will describe the proposed method with its different
variants while the fifth section will present numerical results
on real audio stereo pameter data.

II. GENERIC ADAPTIVE GOLOMB RICE CODING

The Golomb Rice coding is a well known method for
variable rate encoding of integers. The first version was
proposed by Golomb [4] and applied to encoding of run-
lengths. Its advantage was that it had no lookup table and it
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could be used for sources whose number of different symbols
is not known. It is parameterized by an integer m and can
directly convert any positive integer symbol into a codeword.
For the special case when m is a power of two, m = 2F for
a positive integer k, the coding is known by Golomb Rice
coding [5]. Even though the Golomb Rice coding might be
suboptimal with respect to coding efficiency, it has been used
in image compression algorithms in JPEG-LS [6] due to its
very low encoding and decoding complexity.

The Golomb code is optimal for geometrically distributed
sources:

Pr(X =k)=(1—p)kp,for k=0,1,2,3,... (1)

Gallager and van Voorhis [7] have derived the optimal
parameter k for a Golomb code for the geometrically dis-
tributed source from Equation 1, the integer that satisfies
PP <1< ph 4 p

When the data statistics changes in time, obviously the
optimal Golomb Rice parameter changes as well. There have
been thorough studies on how to select and adapt the optimal
parameter in [8], [9]. Also strategies for adapting the Golomb
Rice parameter for correlated sources have been presented in
[10]. The use of contexts has been proposed for Golomb codes
optimization in [11]. In [12] the authors have proposed to use
the LPC spectral envelope for the adaptation of the Golomb
Rice parameter at each frequency bin for a frequency domain
audio encoder.

III. SOURCE STATISTICS VARIABILITY

When the number of symbols of a source is larger than the
number of values to sequentially encode, it is difficult to assess
the statistics of the current data. In other words, dimension of
the vector of one realization of the data is low, the data statis-
tics of each vector is almost unknown to the encoder, or it may
be quite distant to the a priori data distribution. We consider
as measures characterizing the variability in data statistics the
Kullback-Leibler divergence and the Bhattacharyya distance,
and as variability of a realization the quartile coefficient of
dispersion.

The Kullback-Leibler (KL) divergence from p; to pa, when
p1 and po are discrete probabilities is defined as [13]:

p1(9)
pa(i)

Dgr(p1llp2) = Zpl(i) log, 2
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Since the logarithms are taken in basis 2, the KL divergence
is measured in bits.

For probability distributions p; and ps over the same
domain, the Bhattacharyya distance is defined as [14]:

Dp(p1,p2) = —In (Z \/pl(x)Pz(x)) 3)

The quartile coefficient of dispersion is defined as [15]

C = Qs =G 4)
Q3+
where (1 and )3 are the first an the third quartiles for the
data set.

IV. ORDER ADAPTIVE GOLOMB RICE ENCODING

The data to be encoded consists of M dimensional vectors
of positive integers. We are interested mostly in the case when
M is relatively small compared to the number of possible
symbols IV, making hard to really decide on the data statistics
at one encoding. The vector components can have thus N
distinct values, from 0 to N — 1.

Given the a priori distribution of the data an initial mapping
of the symbols is built. The mapping of the symbols to be
encoded is chosen such that the most probable symbol is
assigned the value 0, the following most probable is assigned
the value 1 and so on. In addition to the mapping, the encoder
also stores a vector of counts for each distinct value. The
vector of counts can be seen as an a priori histogram of the
data. However the value of the counts vector can be also
nonintegers. For each input symbol the encoding using the
order adaptive Golomb Rice (OAGR) coder goes as follows:

e The input symbol z is assigned an ordered symbol z,

according to the a priori defined mapping.

o The ordered symbol z, is selected to be encoded for the

current input data.

o The vector of counts is updated

o The mapping is updated, to reflect the new order in the

counts vector.

o Take next symbol.

The order of the Golomb-Rice encoder can be O or 1, but
it has the same value for the entire frame.

In order to illustrate the process suppose there are N = 9
symbols, from O to 8. The vector of counts, which is initialized
starting from an experimental histogram for the symbols
[0,1,2,3,4,5,6,7,8] could look like:

h=11,3,5,7,9,8,6,4,2]
with the corresponding mapping
m=[8,6,4,2,0,1,3,5,7].
If the sequence of symbols to be encoded is
v=15,6,4,2,4,7,4]

then for the first symbol, the symbol m(5) = 1 is encoded
with GR code. The numbering starts from 0. The experimental
counts vector h is updated such that

h(5) =0.9-h(5) +1
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and
h(i) =0.9- h(i),i # 5.

The vector of counts becomes then h =
[0.9,2.7,4.5,6.3,8.1,8.2,5.4,3.6,1.8] and the corresponding
updated mapping is m = [8,6,4,2,1,0,3,5,7]. Note the
changes in positions 4 and 5.

From the above description it becomes clear that the relative
order between the counts vector components influences on
the encoding efficiency. Therefore it is of interest to study
different options to update the counts. The illustrative example
is just a particular case. Two methods are considered. The first
one interprets the counts as histogram data and the update is
done by addition. We dubb this approach as additive approach.
The second one, after appropriate normalization, interprets the
counts as probability function and updates the corresponding
probability vector through multiplication. More details follow
in the subsequent subsections.

A. Additive model

The counts vector is denoted by h = {h;},j =0: N — 1.
After the encoding of a data vector component v; the counts
vector is updated by

hj=h;+f(j),j=0:N—1.

When the function f(j) = f;(j) is linear we have a linear
additive model:

agj .
. o J< v
fig) = { JN-1) o 5)

N*l*’U,; N*lf’vi ‘7 > vi

The parameter to be optimized is o.
When the function f(j) = fe(j) is exponential we have an
exponential additive model:

— (=2
exp 20?

fe(h) = +4 (6)

C
V2mro?
The parameters allowing flexibility to the method are C, o
and 9.

B. Multiplicative model

In the multiplicative model the vector h is updated by:
hj =h;f(j),j=0:N—1
and the multiplicative factor can be linear or exponential.

V. RESULTS

We have considered as data the stereo parameters of a
parametric stereo/binaural encoder. Most precisely the stereo
subband level differences are the object of study. The audio
data consists of superwideband stereo or binaural speech,
music, mixed content. The sampling rate for superwideband
data is 16 kHz. The two channels are FFT transformed,
aligned and divided in subbands. The subband energies for
each channel are compared subband-wise. It means that for
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each of the b subbands, a subband level parameter is calculated
as: ;
lizlologloE—’f,izo,b—l @)
2

where E; Ir is the energy of the subband ¢ for the left or right
channel. A positive value indicates that for the corresponding
subband there is more energy on the right channel, while a
negative value corresponds to more energy being present in
the left channel.

At each 20 ms frame, a vector of M = 12 subband levels is
calculated. In a stereo parametric encoder, the subband levels
are scalarly quantized and the indexes must be encoded. These
indexes, with values from 0 to N — 1, where N = 31 is the
number of codewords in the scalar quantizer, are the input data
for the proposed entropy encoding method in this paper.

In the following we will present the results of the proposed
variants of adaptive Golomb Rice encoder at encoding these
parameters for a variety of audio signals. The results will also
be compared with what an adaptive arithmetic encoder gives.
Measures describing the statistics of the data to be encoded
will be also calculated and presented.
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Fig. 1. Experimental histograms of the data set considered.

Given the significance of the data, on average it is expected
that the indexes are symmetric with respect to the middle
index and there are more central valued indexes. This is
also experimentally confirmed by the histograms in Figure
1. There is a general tendency to have more indexes around
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TABLE I
DATA (D) DESCRIPTION
D | Description D | Description
1 Binaural music 10 | Two overlapping speakers,
music
2 | Multiple speakers male 11 | Four ovelapping speakers
two by two
3 | Clean speach 12 | Four speakers, no overlap
4 Male Speech, kitchen noise 13 | Female speech, kitchen noise
5 | Female speech, 14 | Four speakers overlapping

cafeteria noise
6 Female speech, kitchen noise 15

two by two, music
Female speech, car noise

7 Male and female speaker, 16 | Male speech
no overlap

8 | Mixed speech and music, 17 | Three male speakers
car noise in big hall

9 | Two speakers over music 18 | Four male speakers

the centre. However, by comparing the histograms, it can be
even visually observed that they are different from one data
set to another. The audio content type for each data set is
described in Table I. Each data set contains 5 or 6 audio
samples of approximately 8 seconds. The position of the sound
sources/speakers differs as it can also be inferred from the
histrograms. The capture microphone positioning also varies
across the samples. The multiple speaker samples have the
speakers at different physical position.

A. Coding efficiency

We compare three variants of adaptive arithmetic coding
against three variants of the proposed Golomb Rice method. To
preserve the frame errors resilience, no intra-frame correlation
is taken into account in any of the methods.

Adaptive arithmetic coding has been used to encode stereo
level indexes and the results are presented in Table II. Three
variants of arithmetic coding have been tested using different
| probability initialization: AC1 - uniform initialization, AC2 -
off-line collected probability; AC3 - artificial vector of counts
used in the OAGR. In all cases the adaptation for the arithmetic
coder is done like for the OAGR case, within the frame only.

KL is the average Kullback-Leibler divergence between the
data for each frame and off-line collected probabilities. DC is
the average quartile coefficient of dispersion over all frames.
As reference, also the zero order entropy H on each set is
given.

Table III presents the average number of bits used for
encoding the same data sets with order adaptive Golomb Rice.
There are three variants of the proposed method that are
tested. The first one, GR1, uses an exponential multiplicative
| update function and a constant vector of counts initializer. The
parameter values are o = 2.5 and § = 0.5. All the values of
counts are initialized to the value 1, at the beginning of each
frame. The second method GR2, is exponential multiplicative
update with artificial counts vector. The parameter values are
o = 2.5 and 6 = 0.5. The GR3 method uses linear additive
update function with artificial counts vector and the last one
GR4 uses linear multiplicative update function with artificial
counts vector. The parameter values are ¢ = 0.04 and o = 0.1.
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TABLE II
NUMBER OF BITS USED BY ADAPTIVE AC OF STEREO LEVEL INDEXES.

D ACl1 AC2 AC3 KL DC H
1 53.72 | 37.88 | 50.20 | 4.57 | 0.10 36.3
2 51.56 | 33.07 | 49.62 | 6.21 | 0.07 30.8
3 54.25 | 43.23 | 50.79 | 5.62 | 0.10 40.2
4 5231 | 5424 | 51.63 | 7.11 | 0.07 37.6
5 53.29 | 65.86 | 53.09 | 8.64 | 0.08 39.5
6 5476 | 4190 | 50.72 | 4.87 | 0.12 39.0
7 53.84 | 39.37 | 50.41 | 4.50 | 0.11 37.0
8 54.57 | 49.87 | 51.60 | 6.82 | 0.13 40.9
9 55.09 | 42.78 | 5092 | 6.25 | 0.12 38.5
10 54.59 | 40.69 | 50.61 | 5.31 | O.11 38.3
11 54.04 | 4232 | 50.65 | 5.29 | 0.10 39.3
12 53.53 | 48.64 | 51.44 | 7.96 | 0.10 435
13 54.66 | 43.30 | 50.78 | 4.33 | 0.12 38.7
14 53.73 | 37.39 | 50.19 | 452 | 0.10 35.7
15 5221 | 32.72 | 49.59 | 4.32 | 0.08 30.8
16 4823 | 27.78 | 48.73 | 6.71 | 0.06 23.2
17 54.60 | 4736 | 51.40 | 7.10 | 0.12 42.7
18 51.52 | 33.02 | 49.61 | 6.24 | 0.07 30.7
Average | 53.36 | 42.30 | 50.67 | 590 | 0.10 | 36.82
TABLE IIT
NUMBER OF BITS USED BY OAGR CODING OF STEREO LEVEL INDEXES.

D GRI1 GR2 GR3 GR4

1 47.41 | 40.64 | 39.74 | 40.18

2 4328 | 37.04 | 3596 | 36.00

3 4827 | 41.84 | 40.39 | 42.55

4 4584 | 38.90 | 38.62 | 41.65

5 48.22 | 42.16 | 42.63 | 47.40

6 50.11 | 45.26 | 42.55 | 45.11

7 50.60 | 42.91 40.78 | 42.24

8 4926 | 44.13 | 41.12 | 4554

9 49.70 | 4346 | 4146 | 43.77

10 48.92 | 42.19 | 40.80 | 42.39

11 47.59 | 41.02 | 40.30 | 41.52

12 4743 | 41.60 | 41.33 | 43.28

13 50.00 | 44.62 | 42.13 | 45.24

14 47.50 | 39.75 | 38.77 | 40.33

15 44.07 | 3749 | 36.27 | 36.65

16 39.55 | 33.66 | 33.27 | 31.87

17 50.64 | 4498 | 43.50 | 45.68

18 4324 | 3697 | 3590 | 3595

Average | 47.31 | 41.06 | 39.75 | 41.60

The artificial counts vector is generated such that its cor-
responding mapping gives an almost symmetric distribution
with the maximum in the centre. The articifial counts vector
is given by: h =[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
27, 29, 31, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4,
2].

The best results for the AC and for OAGR are given in bold.
It can be seen that for most of the data sets the OAGR performs
better. The cases when the AC is slightly better are the ones
where the data histogram is similar to the one presumed by
the AC.

Analyzing the average values of the KL divergence and
quartile dispersion coefficient, one notices some differences
across the data sets. As expected the sets having higher KL
divergence from the off-line collected probabilities are best
encoded with the OAGR. Also, at a closer look, let’s consider
the Data set 4, where there is a bit performance difference
between AC and OAGR. The KL divergence per frame be-
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Fig. 2. Kullback-Leibler distance of the data probability distribution to the
default, initializing probability distribution of the arithmetic encoder. Each
vector has 12 components. One sample from Data set 4 is considered.
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Fig. 3. Bhattacharyya distance of the data probability distribution to the
default, initializing probability distribution of the arithmetic encoder. Each
vector has 12 components. One sample from Data set 4 is considered.
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Fig. 4. Number of bits using AC and OAGR for one sample from Data set 4

tween the frame data statistics and the off-line collected data
statistics, for a sample of 8 seconds from Data set 4 is given
in Figure 2. It can be observed that the KL divergence has
different tendencies in different sections of the data. The same
can be observed also when plotting the Bhattacharyya distance
for the same data (Figure 3). From the above considerations
we can say that the KL divergence per frame is a more useful
indicator on the variability of the source.
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0.16

0 . . . . . . .
0 50 100 150 200 250 300 350 400

Vector index

Fig. 5. Coefficient of dispersion for one sample from Data set 4

Correspondingly, when plotting the number of bits per frame
used by the arithmetic encoder AC2 and the the OAGR variant
GR3 it can be seen that the large difference in the data statistics
cannot be coped with by the AC encoder, while the OAGR
keeps the bit consumption at much lower levels and very
similar to other frames (see Figure 4).

Not the same can be said for the coefficient of dispersion
(Figure 5), for which no particular correlation with the source
variability affecting the encoding performance can be visible.
The variability of the source, or dispersion, within one data
realization vector is not affecting the coding performance in
the sense considered in this work.

As a counter-example, for the Data set 15, the KL diver-
gence with respect to the one initializing the arithmetic en-
coder at each frame is presented in Figure 6. The performance
of the AC for this data set is better than for the OAGR and
this is justified by the closer resemblence of the test data
distribution to the one stored in the AC encoder.
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Fig. 6. Kullback-Leibler distance of the data probability distribution to the
default, initializing probability distribution of the arithmetic encoder. One
audio sample from Data set 15 is considered.
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Regarding the complexity, the general advantage brought
by the Golomb Rice encoding is no longer valid, since sorting
of the counts vector needs to be performed. However, with
respect to storage requirements only an initial table of counts
must be stored, having the length equal to the number of
symbols. Furthermore, since the vector of counts is artificially
generated it can also be generated by the code, so virtually no
storage is required.

VI. CONCLUSION

In the present work we have proposed a new perspective
on the adaptivity of Golomb Rice codes. Instead of adapting
the Golomb Rice parameter, the order of the symbols to be
encoded is adapted on the fly. The approach allows for a
greater adaptivity when it comes to sources with high time
variability, as well as sources where the length of a realization
vector is small compared to the number of possible symbols.
Results on stereo parametrs of real audio data, when compared
with arithmetic encoding show better overall performance for
the proposed method.
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