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Abstract—In this study joint estimation of the symbol timing
offset (STO), and channel impulse response (CIR) of each active
user under the presence of the carrier frequency offset (CFO) is
considered for the uplink of an orthogonal frequency-division
multiple access (OFDMA) system. A new method based on
the compressed sensing (CS) framework using pilot symbols is
proposed for the joint estimation of the STO and the CIR of each
active user. Sparsity is achieved through incorporating the STO,
the cyclic prefix (CP) samples, and the CIR coefficients into a
new signal model. The proposed method does not require CIR
coefficients to be sparse. Numerical results of the performance
of the proposed method using the orthogonal matching pursuit
(OMP) algorithm is presented. The presence of CTO is also
considered as a perturbation to the CS dictionary of pilot
symbols.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
favored multicarrier transmission technique over frequency
selective multipath fading channels in broadband wireless
communication networks due to reducing interblock interfer-
ence (IBI) and providing high data rate transmission [1], [2].
Although OFDM allocates all subcarriers for the transmission
of the symbols of a single user, it can be adapted for a multi
user system by applying frequency division multiple access
(FDMA) techniques. OFDMA (or OFDM-FDMA) allows a
user to change its assigned subset of carriers to a different sub-
set of carriers which may have better channel conditions [3].
However, OFDMA like OFDM is susceptible to both carrier
frequency offsets (CFOs) and symbol timing offsets (STOs)
making frequency and timing synchronization critical issues.
CFO is almost always present since the oscillator frequencies
of the receiver and the transmitter can never be perfectly
aligned and also the receiver can be mobile causing Doppler
spreading. The orthogonality amongst the subcarriers can no
longer be maintained and so intercarrier interference (ICI)
occurs [2], [3]. STOs result in IBI between adjacent OFDMA
blocks. CFO and STO also degrades the quality of the channel
estimates. Errors in timing, frequency and channel estimation
ensue significant losses in the effective signal-to-noise ratio
(SNR) at the receiver increasing the error probability of the

system [4]. Time and frequency synchronization along with
channel estimation must be performed for every user in the
OFDMA system since the CFO, STO, and CIR of each user
is unique.

There exits several solutions for frequency and timing
estimation [5]–[8]. The cyclic prefix (CP) symbols are used
in [6] in order to estimate both CFO and STO. Although this
method provides accurate estimates, a filter bank is required
at the base station (BS) for the separation of each user.
Thus, this method can only be applied to subband based
carrier assignment scheme (CAS) where a group of adjacent
subcarriers is assigned to each user. [7] proposes a method that
can be implemented in generalized CAS (GCAS), where there
is no restriction in the selection of the subcarriers. The method
in [7] estimates the CFO and the STO of a new user entering
the OFDMA system but assumes that all existing users have
already been synchronized. The maximum-likelihood (ML) es-
timation proposed in [8] can be used in GCAS. An alternating
projection algorithm is used to reduce the multidimensional
search of the exact ML solution into simple one-dimensional
searches. The computational complexity of this method is
higher when compared to other methods in [6].

This paper considers the estimation of the STO and the CIR
of each active user in the uplink communication of an OFDMA
system where the CFO is also present. The proposed method
uses the compressive sensing (CS) framework. CS framework
coined in [9], [10] aims to recover unknown signals observed
from underdetermined system of linear equations. It is shown
via CS that signals can be perfectly reconstructed using far
fewer measurements than that of Nyquist theory’s when they
can be represented as sparse, only a few entries of the signal
are nonzero, in a basis. The CS based sparse signal recovery
methods have already been applied to estimate the CIR of the
OFDM systems [11]–[13]. However it is assumed by these
works either that the channel has a long delay spread and
most of the coefficients of the CIR are zero or that the nonzero
CIR coefficients occur at the same entries for several channel
instantiantions. In our method the sparsity is exploited through
the expansion of the CIR of each user with the STO and the CP
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symbols and so does not rely on the sparseness of the channel
coefficients of the users. A training block of pilot symbols is
required to create the CS dictionary and any sparse recovery
algorithm can be used to recover both the STO and the CIR
of the active users.

II. SIGNAL MODEL FOR OFDMA UPLINK

It is assumed that there are K active users communicating
simultaneously with the BS in the uplink of an OFDMA
network. The kth user sends a block of N symbols denoted as
Xk[m]. Since the total number of subcarriers available to each
user is N , the mth entry of Xk[m] is nonzero if and only if the
mth subcarrier is modulated by the kth user. Inverse discrete
Fourier transform (IDFT) is performed on each user block

xk[m] =
1

N

N−1∑
m=0

Xk[m]ej2πm(n−Ng)/N , n = Ng, ..., Nt − 1,

(1)
where Nt is the total number samples including the CP
samples, Ng , added to the front of xk[m] to eliminate IBI.
Then the time domain samples given in (1) are transmitted
over the channel. The discrete time composite CIR of each user
which includes the transmit/receive filters and the transmission
medium can be written as hk = [hk[0], hk[1], ..., hk[Lk−1]]T ,
where (·)T is the transpose operator and Lk is the chan-
nel length of the kth user. Since Lk cannot be known in
practice, hk is replaced by a Lh × 1 dimensional vector
h′k = [hTk 0T(Lh−Lk)×1]

T where Lh ≥ maxk{Lk} is a
parameter that depends on the duration of the transmit/receive
filters and the maximum expected channel delay spread. The
waveform arriving at the BS is given by the superposition
of the signals from all active users. The received signal after
passing through the channel can be written as

y[n] =

K∑
k=1

{ck[n] (h′k[n] ∗ xk[n− µk])}+ v[n], (2)

where the convolution operation denoted by ∗ is, h′k[n]∗xk[n−
µk] =

∑Lh−1
l=0 h′k[l]xk[n−l−µk], and µk is the STO of the kth

user expressed in sampling intervals, and the additive noise,
v[n], is complex Gaussian with zero mean and variance σ2

v ,
and ck[n] = ej2πεkn/N where εk denotes the normalized CFO
for the kth user. In order to see the effects of CFO, discrete
Fourier transform (DFT) can be performed on the received
signal (2)

Y [m] =
K∑
k=1

{Ck[m] ∗ (H ′k[m]Xk[m])}+ V [m], (3)

where Ck[m], H ′k[m], Xk[m] and V [m] are DFT of ck[n],
h′k[n], xk[n], v[n] respectively. Ck[m] is expressed as

Ck[m] =
sin(π(εk −m))

N sin(π(εk −m)/N)
ejπ(εk−m)(N−1)/N

ej(2πεkNg/N). (4)

When the normalized CFO is greater than, εk ≥ 0.5, it
comprises of two parts: an integer and a fractional part. The

integer part of the normalized CFO introduces a cyclic shift of
Y [m] [4]. In this paper the normalized CFO for each user is
assumed to consist of only the fractional part and so |εk| < 0.5.
(3) can be rewritten as

Y [m] =
K∑
k=1

{Ck[0]H ′k[m]Xk[m] + Ik[m]}+ V [m], (5)

where Ik[m] is given as

Ik[m] =
N−1∑
r=1

Ck[r]H
′
k[m− r]Xk[m− r]. (6)

As it is seen from (5), the magnitude and phase of the
term, Hk[m]Xk[m], is affected due to CFO, Ck[0]. CFO also
generates the ICI term in (6) from the other symbols. It is
also assumed that a synchronization channel is used in the
downwlink by each user to acquire timing before the uplink
transmission can begin [7]. This assumption guarantees that
the line-of-sight propagation delay is the only cause of the
timing errors which cannot exceed µmax.

The received samples given in (2) can be grouped into
adjacent segments of length Nt each corresponding to an
OFDMA block in the BS time reference. Then the CP samples
are discarded and the remaining samples are collected into N
dimensional vector y as

y =
K∑
k=1

ΓkDkh
′
k + v, (7)

where the following quantities are defined as

Γk = diag(ej2πεkNg/N , ..., ej2πεk(Ng+N−1)/N ) (8)
[Dk]p,q = [xk]|p−q−µk|N , 1 ≤ p ≤ N, 1 ≤ q ≤ Lh. (9)

In (9), [xk]l denotes the lth entry of the vector xk for 0 ≤
l ≤ N − 1 and the modulo-N operation |p− q− µk|N means
that p − q − µk is reduced to the interval [0, N − 1]. The
joint estimation of ε = [ε1, ..., εK ]T , µ = [µ1, ..., µK ]T and
h′ = [h′1

T
, ...,h′K

T
]T can be obtained through (7) by means of

ML reasoning. However, this leads to a complex optimization
problem over the 2K dimensional space spanned by (µ,h).

III. COMPRESSED SENSING APPROACH

Equation (7) can be rewritten to incorporate the STO, µk,
into a new signal model encompassing the CIR as well

y =
K∑
k=1

ΓkAkξk + v, (10)

where Ak and ξk are defined as

[Ak]p,q = [xk]|p−q|N , 1 ≤ p ≤ N, 1 ≤ q ≤ Ng (11)

ξk = [0Tµk×1 h′k
T

0T(Ng−µk−Lh)×1]
T . (12)

In order to guarantee that the received vector (10) is not
affected by IBI, the number of the CP symbols must satisfy
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Ng ≥ Lh+µmax. When the DFT is performed on the received
samples, (10) becomes

r =
K∑
k=1

CkXkFξk + z, (13)

where F denotes the first Ng columns of the N point DFT ma-
trix, Xk = diag{Xk[0], ..., Xk[N − 1]}, z = [V [0], ..., V [N −
1]] and Ck is

Ck =


Ck[0] Ck[N − 1] . . . Ck[1]
Ck[1] Ck[0] . . . Ck[2]

...
. . . . . .

...
Ck[N − 1] Ck[N − 2] . . . Ck[0]

 . (14)

For an OFDMA system with K active users equation (13) can
be rewritten into folowing equivalent form

r = Q̃ξ + z, (15)

where Q̃ and ξ are given as

Q̃ = [C1X1F,C2X2F, ...,CKXKF] (16)

ξ = [ξT1 , ξ
T
2 , ..., ξ

T
K ]T . (17)

By stacking K vectors of ξk, the new unknown signal model,
ξ, consists of the STOs and the CIR of each user in the
OFDMA system. As it can be observed from (12), the number
of zero entries added due to the STO and CP symbols sparsify
the vector ξ by a ratio of ρ = (

∑
k Lk)/(KNg). Since the CP

length must always compensate for both STO and channel
delay spread by design, Ng ≥ Lh+µmax, the sparsity ratio ρ
can vary in the range of ρ ∈ (0, 1) with larger ρ corresponding
to more complex or less sparse signals. Lower sparsity ratios
or more sparse signals can be obtained by increasing the CP
length, Ng .

CS recovery methods search for a sparse representation
of the unknown signal which fulfils the condition that the
representation basis, Q̃, yields the observations

minimize ||ξ||0
subject to r = Q̃ξ (18)

by minimizing the `0-pseudo-norm which is defined as the
cardinality of the support set of the unknown signal. This
optimization problem (18) is a nonconvex NP-hard problem
since it involves an intractable combinatorial search. Sparse
signal recovery methods can be grouped into two categories:
greedy methods that are based on the matching pursuit algo-
rithm [14], [15] and convex relaxation methods [9], [16]–[18]
that are based on minimizing `1 norm of the unknown signal.

Sparsity promoting methods are functions of the data (r, Q̃).
Because of the additive noise term, z, we know that our
observations, r, are perturbed. In addition to this the sensing
matrix can also be considered as perturbed in the presence
of CFO due to Ck matrices seen in (16). Since we do not
have any prior knowledge about the CFO of each user in
the OFDMA system, the sparsity promoting methods do not

have access to the true CS matrix Q̃ and so they can only be
functions of the data (r,Q) where Q can be written as

Q = [X1F,X2F, ...,XKF]. (19)

The perturbation on the matrix Q can be interpreted as
multiplicative noise due to the extra noise term which can
be seen by substituting Q̃ = Q + E in (15) giving Eξ. The
performances of the CS recovery methods under this general
type of perturbations are studied in [19], [20].

The best case scenario of the perturbation analysis is the
oracle case where both the CFOs, Ck matrices, and the support
set of the unknown signal, S = {i | [ξ]i 6= 0} , are already
known. Since Q̃ can be constructed now, the problem turns
into the classical least squares problem where the solution is
given as

ξ̂
#

S = (Q̃H
S Q̃S)

−1Q̃H
S r. (20)

Using the support S, it is straightforward to extend the
solution, ξ̂

#

S , to ξ̂
#

by adding zeroes for the entries that are
not on the support, SC = {i | i /∈ S}. The error for the oracle
estimator [18] can be found as

E{‖ξ̂
#
− ξ‖22} = σ2

v Tr{(Q̃H
S Q̃S)

−1}. (21)

The oracle bound (21), which also coincides with the Cramer
Rao bound for the CIR estimates, can be used as a benchmark
to compare the performances of the CS recovery methods since
it represents the best case where the support of the unknown
signal and the perturbation to the sensing matrix is given.

IV. NUMERICAL RESULTS

For simulations, an OFDMA system with N = 128 sub-
carriers is considered. The CIR of each user is generated
with Lk = {8, 7, 6, 5} paths. Independently and identically
distributed complex Gaussian random variables with zero
mean are used to generate the CIR coefficients. The power
delay profile of the CIR is exponential, E{|hk(l)|2} = λke

−l.
In order to guarantee that the signal power of each user is
unit, the constants of the power delay profile are computed
as λk = 1/(1 + e−1 + ... + e−Lk). There are K = 4 active
users in the OFDMA uplink with 32 subcarriers reserved for
each user. The values of the normalized CFO and STO for
each user are set as εk = {0.001,−0.0005, 0.003,−0.0002},
and µk = {3, 2, 1, 1} respectively. CP length is chosen as
Ng = 20 to accommodate for both the CIR and the STO. For
this CP value, the sparsity ratio of the signal in our model
(15) becomes ρ = 0.3375. OMP algorithm is implemented as
the sparse recovery method for the CS framework. The SNR
is varied between 10dB and 40dB, and 10000 Monte Carlo
iterations are run for each SNR value. Transmitted symbols
are randomly chosen from quarternary phase shift keying
(QPSK) constellation for each iteration and the subcarriers
are randomly assigned for each user in accordance with the
GCAS scheme. Figure 1 shows the mean squared error (MSE)
of the STO estimates for each user in the OFDMA system
versus varying SNR. The proposed method is able to produce
estimates for STOs which improve as the SNR increases. The
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Fig. 1. MSE of STO estimates of each user versus SNR.

10 15 20 25 30 35 40

SNR [dB]

10-5

10-4

10-3

10-2

10-1

M
S

E
 C

IR

User 1

Oracle 1

User 2

Oracle 2

User 3

Oracle 3

User 4

Oracle 4

Fig. 2. MSE of CIR estimates of each user versus SNR.

performance of the proposed estimator does not hit an error
floor for any user across the given SNR range. The MSE
of the estimates for users with greater STO such as user
1 and 2, is greater than the MSE of the other users with
lower STOs. Figure 2 shows the MSE of the CIR estimates
for each user in the OFDMA system. In order to compare
the performance of the proposed CS method, the bound of
the oracle estimator (20) is also given for each user. As it
is observed from Figure 2, the proposed method provides
estimates close to the oracle estimator (20) for users 1, 2 and
4 without using any prior knowledge about the CFO, STO
or CIR of any of them. The estimate for user 3 reaches an
error floor when the SNR becomes greater than 30dB. Since
the CFO of user 3, ε3 = 0.003, is significantly greater than
the CFO of other users, the multiplicative noise ends up being
greater compared to other users which results in poor CIR
estimation performance for user 3. It is also seen that the
proposed method is able to produce robust CIR estimates for
users 1, 2, and 4 although the CFO of user 3 is impairing the
measurements of other users as well.

In the second simulation the channels generated for each
user are kept same but the CP length, Ng , is varied between
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Fig. 3. MSE of STO estimates of user 1 with varying Ng .
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Fig. 4. MSE of CIR estimates of user 1 with varying Ng .

12 and 62 (Figure 3). By changing the CP length, we also
change the sparsity ratio of the unknown signal (15) from
0.5417 to 0.1048. As the CP length increases, the unknown
signal becomes more sparse. The MSE of the STO estimates
for user 1 with various CP lengths are shown in Figure 3. It is
observed that increasing the CP length yields better estimates
for the STO and thus decreases the MSE of the STO estimates.
A drawback of the proposed method can be observed from
Figure 4. Increasing the CP length also increases the the MSE
of the CIR estimates.

V. CONCLUSION

The problem of estimating the STO and CIR of all active
users with CFO in the uplink of an OFDMA system is inves-
tigated in this paper. We introduced a CS based framework
to jointly estimate the STO and the CIR of each user. The
proposed framework incorparates both the STO and CIR into
the signal model and uses the CP symbols needed for the
prevention of the IBI in order to exploit sparsity in this new
signal model. By choosing the CP length, Ng , appropriately,
this approach can sparsify the unknown signal in the proposed
model by the ratio, ρ. Unlike other CS based CIR estimation
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methods, our method does not require the sparsity of the
channel coefficients or channels with long delay spread. CS
framework requires one block of training symbols to generate
the sensing dictionary. Numerical results regarding the perfor-
mance of the proposed method using the OMP algorithm are
presented in the presence of CFO. Numerical results show that
the proposed CS framework provides robust estimates under
the presence of the CFO.
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