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ABSTRACT

We address the problem of estimating a spatial field of
signal strength from measurements of low accuracy. The
measurements are obtained by users whose locations are
inaccurately estimated. The spatial field is defined on a
grid of nodes with known locations. The users report their
locations and received signal strength to a central unit where
all the measurements are processed. After the processing
of the measurements, the estimated spatial field of signal
strength is updated. We use a propagation model of the signal
that includes an unknown path loss exponent. Furthermore,
our model takes into account the inaccurate locations of the
reporting users. In this paper, we employ a Bayesian approach
for crowdsourcing that is based on Gaussian Processes.
Unlike methods that provide only point estimates, with this
approach we get the complete joint distribution of the spatial
field. We demonstrate the performance of our method and
compare it with the performance of some other methods by
computer simulations. The results show that our approach
outperforms the other approaches.

Index Terms— Sensor networks, Bayesian estimation,
regression, spectrum sensing, Gaussian processes.

1. INTRODUCTION

Due to the rapid growth of wireless communication
technologies, radio frequency (RF) spectrum monitoring has
gained significant research interest. Spectrum monitoring
amounts to detecting intruders in a spectrum band of interest
and finding vacant channels that have no interference from
other users [8, 14].  Current RF spectrum monitoring
approaches suffer from one main drawback: they do not
scale well and their coverage area cannot be easily extended
due to cost problems. One appealing solution is to use
measurements of users with low-cost but also low-accuracy
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sensors in large-scale geographical areas, and to exploit
crowdsourcing for spectrum monitoring [13]. One can expect
that when the density of users becomes high enough, a
method based on measurements from large number of not
very accurate devices will produce better spectral maps than
based on measurements from a small number of accurate (and
expensive) instruments.

In spectrum monitoring, we typically have access to
received signal strength (RSS) measurements with errors
made at a set of known locations, and the goal is to estimate
as accurately as possible the RSS at any location in an area
of interest. The estimation of RSS values is not just used for
spectrum sensing; it has also been successfully exploited for
localization [6, 12], tracking [5], distance estimation [9] and
distributed asynchronous regression [7].

Existing approaches for RSS estimation apply spatial
interpolation techniques to the data, such as Ordinary Kriging
(OK) and Inverse Distance Weighting (IDW) [10, 11]. One
class of methods estimate the path loss exponent from the
measurements and treat this estimate as the true value.
Furthermore, many of these methods produce point estimates
of signal strength without providing the uncertainties of the
estimates. Another class of methods exploits probability
theory to compute soft estimates of the RSS. For example,
in [8], the authors model the RSS as a multivariate Gaussian
distribution with an exponential correlation model, where the
path loss exponent and the locations of users are perfectly
known. Similarly, in [3, 6] the authors apply a Gaussian
Process (GP) to model the RSS, and for estimation they use
measurements from known locations. All these approaches
assume a log-normal path loss model and perfect knowledge
of the user locations.

In this paper, we extend the approach in [6] to propose
a more complex GP implementation. Specifically, we take
into account that the locations of the users that provide RSS
measurements are not accurate and that the path loss exponent
is unknown. The location errors of the users are assumed
Gaussian, and the path loss exponent, too, is modeled as a
Gaussian random variable. The parameters of the path loss
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Gaussian are estimated according to the empirical Bayesian
approach. In our paper, we fix the locations where we
estimate the RSS field. Thus, at any time instant, we can
summarize all the information from previous measurements
and can easily update the estimate with new measurements.
Thereby, we make the approach scalable. We note that, if
necessary, we can readily inject time variation of the field (not
addressed in the paper).

The paper is organized as follows. We first describe the
notation and our model in Section 2. In Section 3, we explain
the modeling of the path loss exponent with a Gaussian
distribution and how we obtain its hyper-parameters. We
describe how we apply GPs to our system in Section 4.
Simulation results are presented in Section 5. They show
how our approach outperforms interpolation and graph signal-
based techniques and how the estimation error reduces when
the density of users increases. We provide conclusions in
Section 6.

2. SYSTEM MODEL

We consider an area with many users who have low-cost
sensing devices of RSS measurements. These users measure
the RSS of one transmitter with a known location z, € R2.
The locations of the users are not perfectly known, that is,
we only have the estimates of their locations. We denote the
estimate of the location of the ith user by Z;, and we model it
according to

i ~ N (@iai,00l), (H

where z; € R? is the exact location of the ith user, and I is
the 2 x 2 identity matrix.

The measurement (expressed in dB) of the ¢th user is
modeled by

Zi = P — 10a loglo(di) + (o + wi; (2)

where P is the transmitter power measured at a distance of 1
m, « is the path loss exponent, d; is the distance (in meters)
between user ¢ and the transmitter, v; is attenuation due to
shadowing effects, and w; is some unrelated additive noise.
Recall that d; is not known, but instead its estimate &; is
available. Therefore, we modify (2) to

-~

2 = P — 10& loglo(di) + Uj + (% + Wy, (3)

where c@ is now used instead of o?i, and wu; is error that reflects
the imprecisely known location of the users. We adopt the

following:
2
P
v~ N (vi;0,07), )
w; ~ N (w;0,02). (6)
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The attenuation variables are correlated, and for them we
assume

COV(Uin) = Ugexp(_gl\ij/Dcorr)a (7)

where (Z-j is the estimated distance between users ¢ and j
and D, is a parameter that models the correlation in the
measurements.

We are given a vector of measurements (taken at the same
time) obtained by N users, z = [z1 23 --- zn] ', expressed by

1P —qa+u+v+w, )

VA =
where 1is an N x 1 vector of 1s,

qg = [10 10%10(5/[1) 1010%10(32) T 1010g1o(gN)]T7(9)

and u, v and w are all in RN, and

u ~ N(u0,02D), (10)
where D :diag{l/c/i\%,l/c/lg,~-~ ,l/c/l?v},and

v~ N(U;O,Ev)7 (11)
W~ N(w;O,Uﬁ,IN), (12)

where X, is comprised of elements given by (7), and Iy is
the N x N identity matrix.

In the following, we assume that P, o, 03, D.orr and
a?u are known. Given z, the noisy location of the users,
= [T} - - - Tn], and the model in (8) and all the assumptions,
we want to estimate the values of RSS at M grid locations,
Tq = [Ta, - Ta,,) € RM*Z,

2

3. ESTIMATION OF PATH LOSS EXPONENT

Given a set of measurements modeled by (8), we want to
estimate . We assume that the prior of « is a Gaussian
distribution p(|f) ~ N (; pta, 02), with unknown hyper-
parameters 0 = ({14, 02 ). The posterior of « is

plalz,2,0) = —————, 13)

where p(z|a,Z) ~ N(z;uzm,zzﬁﬁ), which is also a
Gaussian whose moments are given by

1P — qa, (14)
02D+ %, + o2 Iy, (15)

Mz
Ez\a =

and p(z|Z,0) is the marginalized distribution of the
measurements, which can be computed by

p(=[7.0) = / p(zlo,Dp(alf)da.  (16)
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We estimate 6 using the empirical Bayes method [2]. We do
it by solving (16), where the result of the integral is also a
Gaussian [1],

p(2[2,0) ~ N (2;p.,%,) (7

with
Mz = ]-P_Q/~Lav (18)
¥, = Ez‘ajLaiqu. (19)

We estimate p, and o, from the data and proceed as follows.
We approximate p, with z and write

1P -2 = qpia, (20
and p,, is obtained from
-
~ q' (1P —z
Ho = % 21
q 9
We estimate the variance from
a = o2b, (22)

where a and b are diagonal elements of A = (z — [i,)(z —
)" — Y. and B = qq ', respectively, where [i, =
1P — qpi,. If a diagonal element of A (or B) is negative,
it is set to zero. Then
bla
~2
= —. 23
Finally, following (13), the estimated posterior distribu-
tion for « is obtained as

P012,7, 710 52) ~ N (aipaz02.), @4

where
or. = (@ +d' S La)7 (25)
Holz: = 0o (4" S0z = 1P) +5.%[a).  (26)

4. RSS ESTIMATION WITH GAUSSIAN PROCESSES

The system in (8) can be seen as
f(@)+e 27)

z =

where ¥ is an N X 2 matrix with the noisy locations of the
users, € is a noise vector formed by

e=ut+w ~ N(E;O,EE:UZ)IN+O'ZD), (28)

and the function f(Z) = 1P — qa + v is modeled as a GP
f(@) ~ GP (f(Z);mz, Kz), where mz and K3 are the mean
and covariance functions, respectively, given by

mz = [m(@1)--m@n)], (29)
Kz = K(Z,%)+352qq, (30)
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where K (Z,Z) is an N x N matrix comprised of elements
k(z;,%;) given by a specific kernel function. A possible
choice of this kernel function will be seen in Subsection 4.1.
Usually, the elements of the mean function, m(z;), are
assumed to be zero, which means that in the absence of
training data, the model would tend to zero. In order to avoid
this behavior, we set each element of the mean vector as

m(#;) = P —10fia log,o(d;). (31)

The joint distribution of the observed values and the
estimated RSS at the main grid locations, fg4, can be computed

as
z z mz Kz+X K=
~ (g [T ) e
|:fd:| fd Mgy Katd,'z\ Kﬁvd;vd ( )
where
My, = [m(za,)- - m(za,)]", (33)
Kiuy = K(&,24)+05944 (34)
Kz = K;,zdv (35)
Kid,wd = K(xdvxd)+aiquer7 (36)

da = [10 1OglO (ddl) -+ 10 1OglO (ddM)]Ta (37

and dg4, is the distance between the grid node ¢ and the
transmitter.

The conditional distribution of the RSS at the grid
locations given the measurements and the estimated locations
of the users is

p(fd|l’d,£,2’7,aa78a) ~ N(fd;/’[’fdﬂzfd)? (38)

where
pr, = Ma,+ Koy (Ko +3) 7 (2= m3), (39)
Sp, = Kepwy—Koys (Ks+35) " Kipy.  (40)

The estimates of the RSS at locations x4 can be obtained by
fa = py,. We call this approach as GP-based approach.

4.1. In the kernel selection

The choice of the kernel function is typically left to the user.
One commonly used kernel is the squared exponential (SE)
kernel

1
banay) = ofexp (=gl —a) (o= 2)) . @D

where the hyper-parameters, o and [, are tuned according
to the training data. We used this kernel to show the good
performance of the algorithm even with a kernel that does
not fit exactly the model in (7). In this paper, the hyper-
parameters will be setto [ = D, and 0’,% = g2

v
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5. EXPERIMENTAL RESULTS

We considered an area of 500 m x 500 m with a transmitter
placed at its center and with 100 users at random locations
within the area. The RSS was generated following (2). The
density of users was four per 100 m x 100 m. The noise
variance was set to 0720 = 0.8dB, D.or = 50 m and P =
—10 dBm. We considered 16 fixed uniformly placed nodes
where we estimate the RSS and conducted 1000 different
experiments. In all the simulations, we show the performance
of our GP approach, the inverse distance weighting (IDW),
the ordinary Kriging with detrending (OKD) technique and
an the implementation of the graph signal inpainting via
total variation regularization (GTVR) [4]. This last approach
assumes smooth graph signals corrupted by noise and
recovers the inaccessible graph signals from the accessible
ones by minimizing the graph total variation based on the
second norm. For this algorithm, we used an adjacency matrix
defined by

22> di
v ]

A'L j = €Xp (42)

In Figure 1, we plotted the mean square error (MSE) of
all the approaches, where

1
MSE =23 (ns, = fa)?, 43)

where py, is given by (39). It is shown that our approach is
quite stable even when we use the estimated locations of the
users. We observed that the OKD technique is quite sensitive
on the location error of the users, while IDW is more stable
but less accurate than our approach.

6

——GP
—#— IDW
—8- OKD
—e— GTVR

MSE

Shadowing Variance o2 (dB)

Fig. 1: Mean square error for varying shadowing variance and
o, = 0 (solid) and o,, = 200 (dashed).

Figure 2 shows the median estimation errors for varying
2. The solid lines correspond to the simulations with o, =
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0, while the dashed lines to o,, = 200 m. The estimation error
of each node is given as

|:ufd - fd‘

Ja

where py, is given by (39). We observed that the median
estimation error increased when we introduced uncertainty in
the locations of the users (i.e., when 02 grew). The GTVR
technique did not work correctly in this scenario — it had
the highest error. IDW performs similarly to our approach
but with a somewhat higher error, and OKD deteriorates
considerably when errors were added to the estimated
locations of the users. In this setting, the approach proposed
in this paper outperformed the interpolation techniques and
GTVR.

x 100%, (44)

40
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= 30 |
o
=
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=
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e
2
o
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0
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Shadowing Variance o2 (dB)

Fig. 2: Median estimation errors for varying shadowing
variance and o,, = 0 (solid) and o,, = 200 (dashed).

Finally, in Figure 3 we show how the median estimation
error varies with the density of users in the system, for o, =
\/2 dB. The filled bars were obtained with o, = 0, while
the pattern bars with o, = 200 m. It can be observed that
the median estimation error decreased remarkably when the
density of the users increased. Similarly to Figure 2, GTVR
had the highest error, while our approach was the best. The
performance of OKD and IDW was in-between that of GTVR
and of our approach.

6. CONCLUSIONS

In this paper, we proposed a novel Bayesian framework
based on Gaussian Processes to obtain estimates of received
signal strength values at predefined locations in an area of
interest. These estimates are obtained from measurements
acquired by users at random locations and equipped with
inexpensive sensors. The locations of the users are estimates
with errors. In our model, we account for both the substantial
inaccuracy of the measurements and the errors in the locations
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Median prediction error (%)

3 4 5 10 20
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Fig. 3: Median estimation errors for varying density of
observation points and o,, = 0 (filled bars) and o, = 200
(pattern bars).

of the users. In addition, our model contains a path loss
exponent which is assumed unknown and is modeled as a
Gaussian distributed random variable. We estimated the
hyper-parameters of this distribution from the available data.
We showed in the simulations that our approach is quite stable
even when we introduce large errors in the locations of the
users. Our method outperformed the ordinary Kriging, the
inverse distance weighting methods, and GTVR from [4].
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