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Abstract—Genetic data are important dataset utilised in ge-
netic epidemiology to investigate biologically coded information
within the human genome. Enormous research has been delved
into in recent years in order to fully sequence and under-
stand the genome. Personalised medicine, patient response to
treatments and relationships between specific genes and certain
characteristics such as phenotypes and diseases, are positive
impacts of studying the genome, just to mention a few. The
sensitivity, longevity and non-modifiable nature of genetic data
make it even more interesting, consequently, the security and
privacy for the storage and processing of genomic data beg
for attention. A common activity carried out by geneticists is
the association analysis between allele-allele, or even a genetic
locus and a disease. We demonstrate the use of cryptographic
techniques such as homomorphic encryption schemes and mul-
tiparty computations, how such analysis can be carried out in
a privacy friendly manner. We compute a 3 X 3 contingency
table, and then, genome analyses algorithms such as linkage
disequilibrium (LD) measures, all on the encrypted domain.
Our computation guarantees privacy of the genome data under
our security settings, and provides up to 98.4% improvement,
compared to an existing solution.

I. INTRODUCTION

In recent years, it has become possible to perform whole
human genome sequencing, which was not an easy feat only
a few decades ago [1], [2]. Geneticist and researchers are
now depending on the availability of the human genome in
digital form to conduct ground breaking research. The genome
contains rich information about the direct owner, relatives and
even species, and most of these information are yet to be
properly understood by scientist [1], [3]. Therefore, it is often
the case that the genome is investigated to obtain various types
of relationships. These relationships may include paternity
relationships, possible human emigrations hundreds of years
ago, gene-phenotype relationships, gene-disease relationships,
patients response to a particular medication. Investigating
relationships as listed above have numerous advantages which
would include better understanding of human genome and
possibly provide for better preventive and personalised health-
care [1], [4], [2]. However, the genome is a very sensitive data,
which contains lots of other information about the owners,
thereby posing a privacy threat to those who provide their
genomes for various scientific or medical activities [4], [2].
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When analysing gene-disease relationship, two conditions
are feasible. First, a genetic marker could have a direct effect
on a disease, thereby said to have a causal relationship type
of association with the disease, and the marker doubles as the
disease locus. Alternatively, a disease locus could be in linkage
disequilibrium with a genetic marker, hence an indirect gene-
disease association. In the latter type of association (which
is our mode of interest in this paper), the genetic marker is
not the same as the disease locus, and scientist often perform
computation of statistical measures to ascertain the degree
of LD, being, the threshold to confirm the suspicion of an
association. It is not often the case that a single gene is
responsible for a specific trait (disease, phenotype) and a
known way for investigating gene-disease association could
be to compute LD measures between a known genetic marker
and a suspected allele. However, when individuals donate their
genome as sample for analyses, it is usually common to re-
identify participants, creating a huge privacy-risk [5], [4]. The
challenge then become, whether we can perform computa-
tional analyses on genome data, without compromising the
privacy of the genome owners.

We consider a scenario where a processing entity with
sufficient resources store and process genome data, and an
authenticated researcher seeks to compute an operation over
the data stored by the processing entity. The data resident with
the processing entity may have been voluntarily contributed by
individuals, or provided by some verified medical institution.
The researcher is in need of computing an LD statistic measure
over the rich dataset resident with the processing entity.
Because of the privacy-sensitive nature of the genome, it
has become necessary to adapt privacy-preserving measures
while performing computations that require genome data.
Proposed solutions have suggested obfuscating the genetic data
using different approaches like statistical data anonymization
techniques and secret sharing [5]. Other studies have also
suggested access control and security of databanks as the
only measure, but that does not protect the privacy of the
participants. The studies [6], [7] recommend cryptographic
solutions like homomorphic encryption (HE), to encrypt the
data and homomorphically compute the LD statistic measures.
Deploying encryption and related cryptographic techniques
are preferred because it is easy to mathematically prove the
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security of cryptosystems and equally extend proofs to the
constructed solutions, therefore one is able to estimate possible
information leakage. In our work we propose a cryptographic
solution, by encrypting the data and computing the relevant
statistical analysis over the encrypted data. We treat the secure
databank of genomic data as a secure signal sequence, which
needs to be outsourced to an untrusted processing entity for
computation analysis. The encrypted signals (genetic data) are
sensitive and need to be processed in a manner that pays
keen attention to privacy of the data. With the encrypted data
being transmitted and processed by an entity who only has
the computational resource but not able to learn the content
of the data, it equally demonstrates that encrypted signals can
be generated and processed without threat to privacy.

Our Contribution: We are proposing an efficient method
for computing LD statistic measures over encrypted genome
data. We adopt HE as a technique to securely store and
privately compute LD measures from a genotype databank,
owing to the provable security and privacy guarantees it
provides. Furthermore, we introduce an honest-but-curious
Key Manager for our solution, in order to improve efficiency
of computing parameters and reduce storage costs by 83.3%.
Also, we adapt the genotypic LD approach of computing the
LD measures as against the allelic LD approach, because the
allelic LD approach requires haplotype estimation techniques,
which is computationally expensive and often bias [8], [9].
We adopt data packing technique to help manage the data
expansion challenge that comes with encrypting the genes.
Our encoded data storage and retrieval design makes it easier
to dynamically compute the contingency table parameters
necessary for computing the statistical measures, which shows
a significant improvement from existing works [6], [7] that
adopted homomorphic techniques.

Outline: In the rest of this paper, Section II discusses
some related literature, while Section III contains preliminaries
relevant to our work. In Section IV we propose our solution
for privacy-friendly computation of LD measures. Section V
contains security and performance analyses and finally, in
Section VI we have conclusion.

II. RELATED WORKS

Prior to our work, different authors have proposed various
techniques for addressing privacy concerns in genome data
processing, ranging from differential privacy, secret shar-
ing and homomorphic encryption [10]. Specifically, Wu and
Haven [11] demonstrated a secure computing of statistical
analysis algorithms over encrypted data. Their work demon-
strates the use of leveled homomorphic encryption to compute
the mean and covariance of a dataset, other than genome data.

More recently, Lauter et al. [6] conducted a study which
demonstrates the application of homomorphic encryption in
the analysis of genomic data. The study shows that statistical
algorithms (Pearson Goodness-of-Fit Test, r2-measures of LD,
Estimation Maximization (EM) algorithm for haplotyping, etc)
peculiar to genetic studies can be replicated over encrypted
data. Their solution aims to protect privacy of participants
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whose genome data are used in the analysis. The study
however provides a solution that incurs three times the storage
cost, due to their choice of design that maps a single gene
value to three homomorphic ciphertexts. Lauter et al. also
implement the construction of the 3 X 3 contingency table
in a computationally expensive method.

Lu et al. [7] propose a solution which allows for genomic
data to be securely outsourced to a third party who should
perform the analysis over the encrypted dataset. They utilised
leveled homomorphic encryption [12] and present a result that
outperformed Lauter’s implementation [6]. They deployed data
packing techniques thereby reducing the three ciphertext to
one gene mapping that was suggested in [6]. Lu et al. describe
their work for chi-square test using allele frequencies, which
is obtained from genotype/phenotype values contributed to the
processing party.

Other works include that of Shahbazi et al. [13], whose work
presents secure computation of LD measures and Cochran
Armitage Test for Trennd (CATT) using secret sharing. The
adoption of secret sharing requires the use of multiple servers
which is bounded by non-collusion assumption. A secret
sharing solution allows for a faster computation but incurs
more communication rounds and storage requirements.

III. PRELIMINARIES

There are 4 major entities in our description, which are
1) Storage and Processing Entity (SPFE), 2) Researcher (R),
3) Key Manager (K M) and 4) Encoder. We loosely refer
to whoever is responsible for the encryption of the geno-
type as encoder, this could be a participant or a verified
medical institution. The SPFE is responsible for storing all
encrypted genome and subsequently performs computation on
the genome on behalf of an authenticated R who is interested
in computing an LD statistic measure over the dataset. The
KM is an honest-but-curious entity who is only responsible
for key generation, distribution and secure decryption of final
computation results. Also, individuals whose genomes are
available with the SPE are also called participants. Therefore,
a participant’s record is interchangeable with a sample.

A. Linkage Disequilibrium measures

We shall consider two hypothetical genetic markers X and
Y, with each marker having two alleles of the same gene.
Marker X has the alleles A and a while marker Y has the
alleles B and b. Linkage Disequilibrium is said to exist when
two or more alleles at different loci are observed to often be
inherited together in a non random manner [9]. Statistical LD
measures such as Pearson’s correlation, Lewontin’s D, linear
regression are computable given counts of genotypes.

There are two ways of measuring LD statistics, allelic
or genotype-based. Allelic LD measures require haplotype
estimation techniques which is not trivial, but genotype-based
approach allows computation without haplotype estimation. In
our work, we have only the genotype data, hence the adoption
of genotype-based approach for computing LD statistics mea-
sures. We model computations for: 1) The digenic LD between
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two markers X and Y, represented as Dxy . 2) The Pearson’s
correlation coefficient, represented as Axy . Table I is a
3 x 3 contingency table, which shows an example of genotype
counts gen;;, and their marginal sums. n; ,m; represent
the sum of all values in row ¢ , and column j respectively,
i,7 € {0,1,2}. For instance, no = a+b+c, gengy = a ,
also, @@ = ng +n1 + no = mo +mq +mso , which is the total
number of participants. The contingency table shall form the

basis of the rest of our computation.
Given that P(-) represents frequency and p, is the fre-
quency of the allele A, Dxy is computed as [9]:
a
B

pev =2 (3|5 )+ (5 ]d)+r(a
1 Al a Al a
A (45)er (22 m. o

and Eq. (1) can be estimated by,

. 1 1
ny=é(a+b+d+§€)*2ﬁAﬁB7 2

_ 2ng + n1 L 2mo + m1 3)
praA = 20 » PB = 20 .

Let gén be estimated genotype count. Then,

where,
2
E:Zz’%,andg:Zm%, s)

2 2
s2 = <ZFZ> —z%, and sl = (Zﬁ%) —g%. (6
i=0 j=0

Given the above equations, the Pearson’s correlation coeffi-
cient can be estimated as

“ S
Axy = . @)
Sz - Sy
TABLE 1

GENOTYPE COUNTS AT TWO BI-ALLELIC MARKERS X AND Y

BB Bb | bb | 5

AA a b c o)
Aa d e f n1
aa g h i ng

> [ mo [ m1 [ ma| Q

B. Homomorphic Encryption

Homomorhpic Encryption (HE) allows for a simple opera-
tion to be performed on ciphertexts, such that the resulting
ciphertext would decrypt to the same value as would be
obtained if the algebraic operation were to be performed on the
plaintext values. Let Epy(-) and Dg(-) represent encryption
and decryption functions respectively. m; and mgy are two
messages and k is a scalar value, while @ and ® are arbitrary
operations on the ciphertexts. Then, homomorphism is defined
as follows,

D (Epi(m1) ® Epi(me)) = mq+mg,
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Dy (Epp(m1) @ k) = my x k.

We leverage on the additive and scalar multiplicative prop-
erties of the HE scheme described by Paillier [14] to compute
the required statistical algorithm over an encrypted genome
dataset. We refer readers to [14] for more detail about the
cryptosystem.

Secure Multiplication Protocol (SMP): The homomorphic
cryptosystem [14] of choice only offers additive homomor-
phism and no multiplicative homomorphism, we therefore
initiate a secure two-party protocol in order to obtain the
multiplication of two encrypted values [15]. Given two parties
Alice and Bob, Alice holds two ciphertexts E,;(m1) and
E,r(m2) and requires to compute the product E,;(m1 - ma).
Bob holds the secret key sk, Alice picks randoms 71, ro, and
encrypts, then computes Ep,;(m1+71) and Epi(mo+72), then
sends the masked values to Bob. Bob decrypts and multiplies
the results, then encrypts Epj (mq-mo+mq-ro+meo-r1471-1r2)
and sends to Alice. Finally, Alice can unmask the value to
obtain E,i(mq - ma) .

IV. PRIVACY-FRIENDLY LINKAGE ANALYSIS

Given the Encoder, SPE, R and KM setting, our aim
is to preserve the privacy of the participants whose encrypted
data are with SPE, and from which an LD-measure is to be
computed. R is also guaranteed to obtain a correct computation
result from the analysis, but should not learn any identifying
information from the result. Our solution is twofold, first we
homomorphically construct the 3 X 3 contingency table, as
presented in Table I, with each parameter computed as an
independent ciphertext. Secondly, we use the parameters from
the constructed table, as input to computing any LD statistic
measure of choice. In the entirety of our protocol, there is a
non-collusion assumption between any two entities.

The storage overhead of applying encryption is due to data
expansion, therefore, we choose to efficiently constrain data
expansion in our solution. For this reason, we introduce data
packing technique for the encrypted values.

A. Genotype Encodings

To cushion the effect of data growth inherent in encrypting
the genotype, the Encoder performs the following one time
operation to encode genotypes. Let N be plaintext size of the
cryptosystem, recall that @) is the record size of the genotype
counts from Table I.

Setup: The K M generates cryptographic keys (pk, sk) and
makes pk public, and keeps sk secret. Let x be the security
parameter, { = ng;l:’é%], where /¢ is the number of slot
that are contained in the plaintext size of N. slot, represents
the 7* slot in N and 5 € {0,...,¢ — 1}. The Encoder
reserves the last 4 slots {slot;_q, sloty_3, sloty_o, slotg_1}
for indicating genotype intersections, this means there are only
¢ — 4 slots reserved for genotypes. Let number of genes to
be encoded in a single ciphertext be § = 5%4, which means
that a single gene needs 3 consecutive slots, each of size
(logy @+ K +1)-bits. Let {X,Y ,--- , Z} be a set of markers.
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Let ¢ be the plaintext encoding, so that,

For a given genotype database with maximum record thresh-
old of @, and each record E,(t) being a ciphertext of -genes,
S PFE reconstructs a similar table as the model in Table I. For a
genetic marker X, with dual alleles A/a and possible genotype
values of {AA, Aa,aa} with corresponding index {0, 1,2}
respectively. The Encoder allocates a triple-slot to the marker
X, with the genotypes mapped to the corresponding slot index,
i.e X; for i € {0,1,2} as indicated in Eq. 8. For every gene in
a sample encoding, and given the participant’s genotypes, the
value 1 is entered in the slot for every corresponding genotype
expressed by the participant, and every other genotype slot is
completed with value 0.

Step 1: For two genetic markers X,Y in the encoding
that are of interest for computation, the Encoder indicates
corresponding intersection slots with value 1 for where an
intersection for one of {¢« = AA/BB,b = AA/Bb,d =
Aa/BB,e = Aa/Bb} exists, and value 0 otherwise. Encoder
then sends E,(t) to SPE.

Step 2: To reconstruct Table I from a database of T records,
with each record E,;(t;) for 0 < j < T representing
encrypted genotypes modelled after Eq. 8 SPE computes,

H Eu(t;) = Epk Zt , as a single

ciphertext courtesy of the Paillier cryptosystem [14]. It can be
observed that the summation allows for slots to be summed
component-wise, without overflowing into a neighbouring slot,
therefore providing a ciphertext that should decrypt to a
plaintext which preserves the encoding in Eq. 8.

Step 3: In reference to Table I, SPE can obtain the follow-
ing parameters {a, b, d, e, ng, n1, N2, Mgy, M1, M2} as a packed
ciphertext from the homomorphic addition result.

Secure Unpacking Protocol (SUP): An SUP requires
that SPFE initiates a secure two-party protocol with KM
in order to unpack a single ciphertext of encoded sums
of t’s, into 10 independent ciphertexts of the parameters
{a,b,d, e, ng,n1,n2, mg, m1, ma}, from which ciphertexts of
the remaining variables can be obtained homomorphically.
SPE chooses a cryptographic secure random number r of
size N-bits, encrypts 7 and performs an additive masking of
genSum to obtain Ep(genSum + ), which is sent to KM
for unpacking.

Step 4: KM decrypts the masked ciphertext to obtain a
masked plaintext P, and splits P into ¢ parts, each of size
(k+1logy @+ 1)-bits, then encrypts each of Py, -+, Py—1 and
returns the ordered values to SPFE.

Step 5: SPE receives {E,i(Fo), -, Epi(Pr—1)} and splits
r into {rg,---,7r¢—1}, each of size (k + log, @ + 1)-bits,
encrypts each r; for unmasking the corresponding FP;.

Step 6: To construct Table I, SPE has the encryption of
each of {a,b,d, e, ng, n1,n2, mgy, my, ma}, from which SPE
deduces the rest of the variables as follows: ¢ = ng — a —
b; f=n1—d—e g=mog—d—a; h=m;—b—e;

E,(genSum)

i:
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mo —c— f; and Q = ng + ni + ns . And the table structure

in Table I is correctly constructed.

B. Homomorphic Computations

Once the variables of Table I are all computed, any LD
statistic measure which require only the available parameters
as input, can be computed homomorphically by the SPE
without learning the contents of the ciphertexts. For example,
in order to estimate the Pearson’s correlation coefficient A xy
from our constructed table of ciphertexts, we rewrite Eq. 7 as
follows; .

A%(Y =
Q- (e +2f +2h + 44) — (mq + 2m2)(n1 + 2n2))?
Q- (n1+4n2) — (n1 + 2n2)2][Q - (M1 + 4m2) — (M1 + 2m2)?]

_ Q- (e+2(f +h+2i)) — (m1 + 2ma)(n1 + 2n2)]?
Q- (n1 +4n2) — (n1 4 2n2)?][Q - (M1 + 4ma) — (m1 + 2m2)2](9')

The above equation correctly computes the square of the
Pearson’s correlation coefficient using encrypted inputs. In the
same way, we can rewrite Eq. 2 as:

b Q- (2(a+b+d)+e)— (2ng +n1)(2mo + my)
XY — 2Q2 .
(10)

According to [16], the goodness-of-fit statistic test for a
locus can be re-written as:

2 QD> Q- (4Q-no — (2ng +m)*)?
pa-(1—pa) (2Q — (2no +n1))(2no + n1)?
where,
D=Pys—p3 . (12)

Step 7: When the numerators and denominators are computed
homomorphically, the encrypted result is forwarded by the
SPE to R, who is then required to further run a secure two-
party computation with K M for secure decryption. Also note
that for the algorithms that require homomorphic multiplica-
tion, SPFE runs an SM P with K M.

V. SECURITY AND PERFORMANCE ANALYSES
A. Security and Privacy Analyses

Our aim is to provide privacy of genome data during
storage and processing of the data, such that the utility of
the data is not lost. For that, we recommend at least 80-
bits of security, and for our chosen homomorphic scheme, we
require at least 2048-bits of Paillier [14] plaintext size. Our
choice of parameters can handle up to 100,000 samples. On
the condition that no two entities within the protocol collude,
we have:

Encoder: The Encoder performs a one time operation by
encoding and encrypting the inputs. After which, he is not an
active member of the protocol. Apart from the values being
learnt during encoding, the Encoder learns nothing else about
other samples. However, a single individual should not be
allowed to encode all data submitted to the SPFE, because,
such an individual will know the result of computations
requested of the SPE. Finally, an Encoder should not know
how much samples another Encoder submits to SPE.
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TABLE 11
COMPUTATIONAL COMPLEXITY FOR CONTINGENCY TABLE.
Enc. Add. Mult. | Dec
Lauter et al. 6N IN +14 | 9N 0
Our proposal | N +21 | N+ 12 0 1
TABLE III
OPERATIONS TIMING RESULTS IN SECONDS.
Enc. Add. Mult. Dec.
Paillier | 0.02287 | 0.000012 | 0.14601 | 0.022738
SEAL 0.08990 | 0.000323 | 0.67082 | 0.087052

SPE: Only ciphertexts are stored on the server, SPFE does
not learn the content of the data stored on his server, and does
not also learn the content of the processed results, since it does
not have the secret key. The SPE can however learn the total
number of records, and can therefore deduce the value for (),
but this can be mitigated by allowing the Encoder add some
dummy samples which are encryptions of zero. The dummy
samples will not affect results of computations, but will only
add a computation cost to generating Table I, as well as storage
cost to the server. Only the SPE is responsible for knowing
the changes (insertion and deletion) of samples.

Key Manager: The K M is an honest-but-curious entity, and
is only allowed to interact with masked values. Therefore, the
K M does not learn the true values he is presented to operate
on, so long as he does not collude with another entity.

Researcher: He obtains aggregated results such as numera-
tor and denominator. He does not possess enough information
to solve for the individual variables, therefore the privacy of
the contributing samples are protected from the Researcher.

B. Performance Analyses

To obtain a fair comparison of our proposal with Lauter et
al’s. [6], while preserving the same level of security offered
by their work, we present here a C++ implementation of both
approaches, using GMP library version 6.1.2 on a 64-bits Intel
core 2 Quad @ 2.66GHz, running Ubuntu 14.04 LTS and
Paillier cryptosystem, with 80-bits security for N samples.
We also mention that one SU P requires 21 encryptions, 11
homomorphic additions and one decryption. Furthermore, we
present a complexity comparison only for constructing the
contingency table in Table II, from which variables are used as
inputs to compute LD measures and other genome analyses.
We ignore the comparison for computing genome analyses
algorithms because those are independent of the sample size.

It can be observed from Table II and III that our ap-
proach for computing the contingency table improves Lauter
et al’s. [6] proposal by 83% storage cost and 98.4% computa-
tional cost. Also we present the average runtime for 1000 runs
of the cyrptosystems (Paillier, Microsoft Simple Encrypted
Arithmetic Library) operations used in Table III.

Finally, we present the complexity for various genome
analysis algorithms we implemented in Table IV.

VI. CONCLUSION

We present a secure, privacy-preserving and efficient ap-
proach for computing LD measures over genome data. Our
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TABLE IV
ALGORITHM COMPLEXITY
Add. | Sub. | Mult. | Scalar Mult.
Pearson’s Corr. Coeff. | 7 3 7 4
LD Coeffiecient 5 1 3 4
Goodness-of-fit Test 1 2 6 3

approach provides significant improvements in storage and
computational complexity from the existing work we com-
pared with. We produce a 98.4% improvement for comput-
ing the 3 x 3 contingency table over that of Lauter et al.
We introduce an efficient Key Manager in a semi honest
security setting, who we leverage on to implement a secure
and privacy-safe packing technique. We implement and show
performance results for algorithms that use genome data, such
as, Pearson’s correlation coefficient, Goodness-of-fit test, LD
coefficient. Our approach can also be used to compute other
LD measures for which the equations are re-written to be
executed using basic additions, subtractions and multiplica-
tions. Our construction is robust and can accommodate up to
100, 000 samples for the parameters presented here.
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