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Abstract—In this paper, we propose a novel methodology
for Change Detection between two monovariate complex SAR
images. Linear Time-Frequency tools are used in order to recover
a spectral and angular diversity of the scatterers present in
the scene. This diversity is used in bi-date change detection
framework to develop a detector, whose performances are better
than the classic detector on monovariate SAR images.

Index Terms—Change Detection, High-resolution SAR, Mono-
variate Image, Linear Time-Frequency Analysis

I. INTRODUCTION

In Remote Sensing, CD (Change detection) consists in
using several images in order to detect or measure the changes
occurring in a scene of interest. The information about the
changes are important in several practical uses such as land
monitoring or quantifying deforestation and urban expansion.
The images can be obtained through passive (Optic) or active
(Radar) sensors. SAR (Synthetic Aperture Radar) sensors
are in peculiar promising for their sensing capabilities in
all weather situations and all light conditions. The ground-
resolution achieved with recent sensors is interesting as well.

Several methods for CD in SAR images have been investi-
gated in the recent years [1]. For monovariate images, the most
simple approach is to derive a GLRT (Generalised Likelihood
Ratio Test) by estimating the variance of a pixel (supposed
Gaussian) for both images [2]:

Λ̂GLRT−mono =

(
K∑
k=1

|xk|2 +

K∑
k=1

|yk|2
)2

K∑
k=1

|xk|2
K∑
k=1

|yk|2
(1)

xk is the value of the pixel in image 1 and yk in the image 2.
The variances are estimated using a window around the pixel
corresponding to K samples. This algorithm does not exploit
the phase and is often referred as an Incoherent CD technique.

Some SAR systems produce multivariate Images of the
scene, meaning that each pixel is represented by a data vector.

PolSAR (Polarimetry SAR) is an example: each element of
the data vector corresponds to the backscattering coefficient
from the scatterers in the zone of the pixel in a single
polarimetric mode (HH, VV or VH). Multivariate images
present a greater diversity for each pixel than monovariate
ones. In this case, we can expect better performances in CD
for multivariate images than monovariate ones. Recent works
have been done to extend the monovariate algorithms in
the multivariate case [3], [4], [5], [6]. Those works exploit
polarimetric diversity to improve the CD results. It can be
wondered if apart from Polarimetry, different sources of
diversity are profitable in CD. This could prove fruitful in
cases where polarimetric diversity is not available. Indeed,
PolSAR necessitates sensors with capabilities of emitting
the electromagnetic waves in peculiar modes which are not
always available. Thus, often the only resources available are
complex single look monovariate images of the scene.

The recent advances in technology have improved the
resolution on the images. An assumption done in traditional
low-resolution SAR image reconstruction is that all scatterers
are white and isotropic. We assume that the scatterers present
in the scene will respond to an electromagnetic wave in
all directions and in all frequencies. This hypothesis is
reasonable for low-resolution SAR systems, but it was shown
([7], [8], [9], [10], [11], [12]) that for recent high-resolution
SAR imagery, it does no longer apply. The scatterers
can have a peculiar signature in angle and frequency
domains. We call these, colored scatterers. This spectral
and angular non-stationary behaviour of scatterers can be
due to their material (dispersive), orientation (anisotropic)
or geometry (anisotropic and dispersive). This spectral and
angular diversity is interesting in the problematic of CD
on monovariate images. However, how can we retrieve this
information?

Several tools can be used in order to unphase the angular
and spectral diversity. For example, by using geometric image
transforms such as steerable pyramids [13], [14], curvelets
[15] or sub-space projection [16], [17]. In this paper, we
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propose to use a linear Time-Frequency analysis based on
the SAR geometry in order to retrieve the information. In
[18], the use of 2D wavelet transforms is used to fetch the
information about the spectral and angular response of the
scatterers present in the scene. The approach is used to detect
targets embedded in a clutter.

We propose in this paper to take advantage of this
methodology, in the CD framework, in order to perform the
multivariate algorithms using spectral and angular diversity.

Section II presents a generalisation of monovariate CD
techniques in multivariate case. These techniques will be
used with the vectors obtained through the decomposition
presented in section III. Section IV provides experimental
results obtained through simulation on a SAR Image and
Section V concludes the work.

II. CHANGE DETECTION PROBLEM

In this section, we formalise the change detection problem
in the multivariate case.

Suppose we have two images I and J of size M and have
each pixel of size p at two different dates:{

I = [i1, i2, . . . , iM ] ∈ Cp×M
J = [j1, j2, . . . , jM ] ∈ Cp×M

The Neyman-Pearson detector has been derived by Novak
in the Gaussian case [3]. If ∀k, ik ∼ CN (0p,Ci) and jk ∼
CN (0p,Cj), the change on a pixel is detected through a
change in its covariance matrix C which is estimated on
a windows of K samples around the pixel. The detection
problem can be written as follows:{

H0 : Ci = Cj

H1 : Ci 6= Cj

Under those assumptions, the GLRT is given by:

Λ̂GLRT−multi =
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We recognize here, the Sample covariances matrices of the
data on I and J:

Ĉi =
1

K

K∑
k=1

ik i
H
k and Ĉj =

1

K

K∑
k=1

jk j
H
k . (3)

Those are the Maximum Likelihood Estimators when the
data is modelled as Gaussian.

III. CONSTRUCTION OF SPECTRAL AND ANGULAR
DIVERSITY

This section presents the methodology adopted to achieve
spectral and spatial diversity using solely a complex mono-
variate image.

ra
n

g
e

  
x

cross-range y

Flight path

Space between
emitted impulses

T
a

rg
e

t-
A

n
te

n
n

a
 d

is
ta

n
c

e

k
1

k
2

θ
1

θ
2

Fig. 1: A reflector, viewed at two different azimuthal angles of
illumination in SAR-stripmap mode.

A. SAR Image construction

Synthetic Aperture Radar Imaging is done by emitting an
electromagnetic wave through a moving radar and analysing
the backscattering signal in order to obtain a map of the
scatterers of the scene. The figure 1 presents the principle and
the geometry of the acquisition for a stripmap SAR. The radar
moves along the axis y called the azimuth which allows it to
observe the scene several times at different looking angle θ.
The signal emitted is located in a certain range of frequencies
and its bandwidth B determines the range resolution of the
radar. k represents the wave vector and it is related to the
emitted frequency by |k| = k = 2f/c (c being the celerity of
the light) and the angle of illumination by θ = arg(k). Then,
k = [kx, ky]

T
= [k cos(θ), k sin(θ)]

T .

Each scatterer is located at a position r = [x, y]
T and has a

reflection coefficient I(r) that is supposed to be the same for
all the frequencies f and looking angle θ. The map of all the
reflection coefficient corresponds to the reconstructed image
of the scene. In usual SAR reconstruction algorithms (i.e.
Range Migration Algorithm [19]), a step is the computation
of the Radar Cross Section H(k). Then, a Stolt interpolation
is done to go from polar to Cartesian coordinates. Finally,
the reconstructed image is obtained by a means of an IFT2
(Inverse Fourier Transform 2D) on kx and ky:

I(r) =

∫∫
R2

H(kx, ky) e2 j π (kx x+ky y) dkx dky (4)

B. Linear Time-Frequency analysis of SAR Images

When colored scatterers are present in the scene imaged,
the IFT2 results in a loss of information about the specificities
of their response. In [18], it is proposed to use 2D wavelet
transform in order to create several sub-images corresponding
to a certain range of frequencies and angles.

In this paper, we propose to simplify the method and use
a Short Time Fourier Transform. Suppose, we have an image
whose spectrum has the definition domain ∆ = [kmin, kmax]∪
[θmin, θmax]. The range of frequencies available is of size κ =
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Fig. 2: Example of decomposition with Nk, Nθ = 3, 3

kmax−kmin and the range of angles is of size Θ = θmax−θmin.
We can define the function φl,m(k, θ):

φl,m(k, θ) =

{
1 if (k, θ) ∈ ∆l,m

0 otherwhise
(5)

with

∆l,m =

[
kmin +

(l − 1)κ

Nk
, kmin +

lκ

Nk

]
∪
[
θmin +

(m− 1)Θ

Nθ
, θmin +

mΘ

Nθ

]
.

(6)

φl,m is a moving window on H to select a range of
angles and frequencies. The size of the window determines
the number of sub-bands Nk and sub-angles Nθ. A sub-image
can be computed by means of an IFT2 on φl,m ×H:

Wl,m(r) =

∫ 2π

0

dθ

∫ +∞

0

k H(k, θ) φl,m(k, θ) e+j2πk
T r dk

(7)
The figure 2 shows an example of decomposition for a SAR

image. We can interpret it as a multivariate image. Indeed, for
each pixel, we can associate a p = Nk ×Nθ vector of data i
corresponding to the value of the pixel in each of the Wl,m

images: i = [W1,1(x, y), W1,2(x, y), ... ,WNk,Nθ (x, t)]
T .

In practice, the image obtained must be decimated
according to the incertitude principle: the support of the
window being more limited in angular and frequency than

the whole image, its spatial power of resolution is impacted.
Consequently the image is decimated by a factor Nθ in the
azimuth direction and Nk in the range direction.

This approach allows to retrieve a diversity that was lost
during the construction of the single look monovariate image.
It is relevant in our problem of change detection as it constitute
a diversity that can be exploited in the algorithms presented
in the introduction. We can assume that a change in the scene
implies that the angular and spectral behaviour of the reflectors
varies as well. This allows in theory a more precise detection
of a change than working on the amplitude alone.

IV. SIMULATIONS

This section describes simulations done on monovariate
SAR images. It presents the results obtained using the de-
composition presented in section III and compares then to the
classic monovariate algorithm.

A. DataSet

Figure 3 shows a SAR Image of static aircraft
available from Sandia National Laboratories
(http://www.sandia.gov/radar/complex_data/). This image
was used in the following simulations. For all simulations
presented here, we chose Nk = 5 and Nθ = 5. Having only
a single image, a change is to be simulated on the image
in order to compute the change detection algorithms. For
simplicity’s sake, only punctual targets are added on the
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image at random positions.

Fig. 3: Example of change generated (SNR: random between [0; 30]
dB, position: random on the image). Top-Left: Image I. Top-Right:
Image J (changes are circled in red). Bottom-Left: Image of targets.
Bottom-Right: Steering vector of one target.

The steering vector is chosen through a random complex
Gaussian distribution. The SNR of the targets can be controlled
by choosing the norm of the steering vector. It enables us to
measure statistical performances. The SNR is defined as the
ratio of the target power and the mean power value of a square
window of size 20 × 20 around the position of the target.
Additional Gaussian noise was added into the image to take
into account the difference in speckle, and its variance was
estimated on the dark zones of the image.

The figure 3 shows an example of image with 20 targets of
random SNR between 0 and 30 dB.

B. Results

Figure 4 shows the plots of PFA-threshold for both mono-
variate and multivariate algorithms. These were computed
using the detection algorithms between the image at t0 and an
image t1 generated without change. The curves were plotted
for several sizes of analysis windows. We can see that its
size is an important parameter in the multivariate case: for
the multivariate GLRT, a size of 5 × 5 the PFA is not well
regulated as the number of secondary data for the estimation of
the covariances matrices is the bare minimum. Having a large
window allows a better regulation, but a too large window
affects the performances of detection.

We choose to test the detection performances with a window
of 7 × 7 for Λ̂GLRT−multi and 5 × 5 for Λ̂GLRT−mono and
for a PFA fixed for 10−3. The threshold for the detection
is obtained using the curves at Figure 4. Figure 5 shows the
detection test for both algorithms on the example presented
at Figure 3. We notice that in the multivariate case, the
detector performs better. Indeed, some low SNR targets, which

Fig. 4: PFA = f(λ) for different sizes of window (computed on
1500 × 1500 samples). Top : Λ̂GLRT−mono. Bottom: Λ̂GLRT−multi.

were not detected in monovariate case, are detected using the
multivariate algorithm (circled in red). There is also less false
alarms on the test image. We note that the localisation of the
detection is degraded because of the decimation. There is a
compromise to be done between the precision we want and the
expected performances of detection. This is done by choosing
the number of sub-bands and sub-looks.

Fig. 5: Detection test at PFA = 10−3. Left: Λ̂GLRT−multi (7 × 7).
Right: Λ̂GLRT−mono (5 × 5).

Monte-Carlo trials have been done in order to measure the
statistical performances of the new detector and compare it to
the monovariate one. A single target is placed at a random
location which varies for each trial. Figure 6 shows a ROC
(Radar Operational Curve) plot for a SNR defined at -5 dB.
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We can see that the multivariate detector performs better,
especially at low PFA where the PD is better by at least 0.2.

Fig. 6: Top: PD = f(PFA) computed on 100 Monte-Carlo trials
(SNR = −5dB, random position of the target and random steering
vector). Bottom: PD = f(SNR) computed on 100 Monte-Carlo trials
(PFA = 10−3, random position of the target and random steering
vector).

Figure 6 shows a PD-SNR plot for PFA = 10−3. The
probability of detection is similar at low SNR, which is
expected as the target is shrouded in the clutter. For the range
of SNR [−15, 20] dB, the performances of the multivariate
detector are better. Indeed, for a given PD, a SNR gain is
noticed: at least 1 dB for PD = 0.2 and as much as 10 dB
for PD = 0.9. These simulations show that the multivariate
GLRT performs better overall than the monovariate GLRT.

V. CONCLUSION

This paper proposed a new methodology for CD on
monovariate SAR images and tested it through simulations
which demonstrated better performances than the classic
algorithm on monovariate images. The increased performances
are obtained with a compromise on the spatial resolution of
the detection. Nonetheless, the spectral and angular diversity
allows for a more accurate detection of the change in terms
of probability of detection.

This work was done using a Gaussian model for the data,
which is a questionable hypothesis for highly-textured images.
It will be extended to SIRV and CES distributions in future
works.
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