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Abstract—In visual tracking of surgical instruments, correla-
tion filtering finds the best candidate with maximal correlation
peak. However, most trackers only consider capturing target
appearance but not target structure. In this paper we propose
surgical instrument tracking approach that integrates prior
knowledge related to rotation of both shaft and tool tips. To this
end, we employ rigid parts mixtures model of an instrument. The
rigidly composed parts encode diverse, pose-specific appearance
mixtures of the tool. Tracking search space is confined to the
neighbourhood of tool position, scale, and rotation with respect to
previous best estimate such that the rotation constraint translates
into querying subset of templates. Qualitative and quantitative
evaluation on challenging benchmarks demonstrate state-of-the-
art results.

I. INTRODUCTION

Visual tracking of surgical instruments is an active re-
search topic. It is a promising technology to be applied
for virtual measurements and overlays [1], maintaining the
operated tissue areas in view [2], guidance and recognition
of risk situations [3], surgical skills assessment [4] and better
understanding of surgical workflow [5]. Many methods have
been proposed to deal with this challenging problem, whereas
most of them concentrate on appearance term representing the
whole tool. For review, we refer to [6].

The correlation filters based approaches aim at representing
appearance of the target object using the learned templates.
They are becoming popular due to low computational cost
and robustness. Additionally, to improve tracking performance,
recent approaches focus on exploiting structural information,
e.g. relation among target parts. The structural information
is usually used to improve the robustness in handling object
deformation and partial occlusion.

For instance in [7],[8] the authors promote an object struc-
ture by introducing smooth constraint of confidence maps. In
[9] the authors proposed to account for object transformation,
translation change and scale variation by performing scale-
spatial correlation jointly using a novel block-circulant struc-
ture for the object template and modeling target rotation in
polar coordinate system. In [10] a structural correlation filter
model is proposed, promoting a local change of scale, rotation
and translation of all parts to be similar, while accounting for
outliers part with different motion behaviour by introducing
sparsity assumption. In [11] the authors proposed deformable

part based correlation filter tracking. In this collaborative
framework, the structure is represented by decomposing an
object into several local parts, while deformation model is
encoded by a global filter. In [12] the authors proposed not
only to consider pairwise geometric relations between local
parts, but to exploit high-order relations using the geometric
hypergraph. Whereas in [13] the authors proposed to combine
correlation filter framework with spatial-temporal angle matrix
to account for object global rotation and deformation in visual
tracking.

All above mentioned methods are designed for general
tracking purpose. However, in some scenarios, the structure
of the object to be tracked is known in advance, and it is
possible to incorporate the specific prior knowledge when
designing the tracker. Well studied examples of known in
advance structure is a face recognition problem [14]. In
this paper, we investigate a surgical tool. We make a use
of its particular structure by decoding change of its pose
between two subsequent frames into three relative rotation.
To this end, we employ rigidly structured model of instrument
parts proposed in [15] presented within adaptive tracking-by-
detection framework [16]. The appearance is modeled within
template-space representing HOG features. We introduce an
injective function mapping each template related to shaft into
two values coding rotation and scale of target object and each
template related to end-effector into vector of four values
coding relative rotations of tips and its scale. Using our model,
a tracking search space is reduced to a local neighborhood of a
tool position, scale, and rotation with respect to current state. A
rotation constraint translates into the model in limited number
of templates to be queried. We sample a resulting search-
space with a pixel-wise dense patch sampling technique [17].
At each time step, both shaft and end-effector position, scale
and orientation are updated. We propose a unified objective
function to integrate these two sparse representation problems
together. The function combines spatio-temporal constraints
related to shaft and end-effector [18], [19], [20] with confi-
dence maps of co-appearance of different part together. The
resulting optimization problem can be well solved by efficient
dynamic programming.

The remaining of the paper is organized as follows: In
Section II, we present the general form of the addressed
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problem and introduce the notation used in this work. We
then present the proposed method in Section III. Simulations
are performed in Section IV, showing the good performance
of the proposed approach. Finally, Section V concludes the
paper.

II. PROPOSED PROBLEM FORMULATION

A. Structural Maximum Margin Correlation Filters

At the frame t, given the target template set (dictionary)
DS =

[
d1S , d

2
S , . . . , d

nS
S
]

and DE =
[
d1E , d

2
E , . . . , d

nE
E
]

re-
lated to Shaft parts, and End-effector poses, respectively, let
zt = {z1,t, z2,t, . . . , zo,t} denote the observed, corresponding
candidate target patch in target template space (e.g. HOG). In a
correlation filters framework, a filtering/classification is based
on searching a maximal correlation peak between observed
data zi,t and a template diS . In the case of dictionary of
templates the problem is to find a maximal correlation peak
over all considered zi,t and all templates in dictionary DS and
DE .

Let Et = {E1,t, E2,t, . . . , EO,t} denote a set of blocks
Ei,t combining N + 1 observed patches from zt such that the
first N patches altogether represent the complete structure of
the shaft and the last one is representing end-effector. For all
Ei,t =

{(
z1,t
)
i
, . . . ,

(
zN+1,t

)
i

}
∈ Et additional constraints

are imposed to enforce all shaft-related parts within one block
to be encoded with the same single template from dictionary
DS . Note that the combination of the templates in the part
related template-space to be the same was enforced in [21],
where the problem was defined within sparsity tracking frame-
work. In the following we limit our investigation to correlation
filter framework. In the proposed approach a structure of a tool
is controlled by: (a) linear coincidence of position of N + 1
patches formatting each block Ei,t and (b) representation
of shaft by the same template. In addition we introduce in
our model the learned biases matrix B ∈ RnS×nE favouring
solutions combining reliable co-appearance of end-effector and
shaft poses. For joint learning of dictionaries and biases we
adopt a maximum margin correlation filters combining good
localization properties of correlation filters with the very good
generalization abilities of support vector machines [22]. For a
detailed description of learning procedure we refer to [15].

With the selective assumption, the local blocks of patches
within the considered set of blocks Et can be represented
through elements of the dictionaries by solving the following
multi-criteria optimization problem:

argmax
xt,yt

∑
(zj,t)

i
∈Ei,t,

j=1,...,N

(
xt
)>
D>S

(
zj,t
)
i
+

(
yt
)>
D>E

(
zN+1,t

)
i
+ (xt)>B>yt (1)

s.t |xt|0 = 1, |yt|0 = 1

where xi,t ∈ RnS and yi,t ∈ RnE are selecting vectors with
one non-zero coefficient equal to 1 related to a pose of single
shaft part and end-effector part, respectively.

Note that in the above defined problem one variable xt is
assign to all parts related to shaft in given Ei,t, and hence the
shaft is enforced to be represented by one template. One of
the drawbacks of the problem formulation proposed in (1) is
that it does not guarantee any temporary homogeneity of the
resulting tracker. To alleviate this shortcoming, we propose to
impose additionally dynamic constraints.

B. Geometrical model for tool dynamics

Templates dS and dE can be decried by its scale a ∈ A,
where A ∈ (0, 1)

Q is a vector of considered scales. Ad-
ditionally, let characterize a template dS through an angel
r1 ∈ (0, 2Π) in polar coordinate system with the origin fixed
in a middle of shaft centreline and axis parallel to template
box axis. Let introduce function θS mapping dS to its scale
and above defined angle. Similarly let characterize a template
dE through a vector of two angles [r2, r3] ∈ (0, 2Π)

2 in polar
coordinate system with the origin fixed on crossing point of
centrelines related to shaft, left and right tips of microsurgical
instrument (scissors) while axis parallel to template box axis.
Let function θE be a mapping dE to its scale and a pair of
above defined angles.

The dictionary DS can be characterized by rotation/scale
image IS ∈ [(0, 2Π) , A]nS , defined as: for every diS ∈
DS , IS(i) = [r1, a1]i ⇔ θS(diS) = [r1, a1]i. Similarly,
the dictionary DE can be characterized by rotation image
IE ∈ [0, 2Π]nE×2, defined as: for every diS ∈ DS , IE(i) =
[r2, r3, a2]i ⇔ θE(d

i
E) = [r2, r3, a2]i. We assume that the

following properties hold:
• The semantic structure of dictionaries - The mapping

from DS to IS and from DE to IE are injective, i.e.
at given scale there is only one appearance template
assign to given rotation of shaft and only one appearance
template assign to given pair of rotations of end-effector.

• The consistent motion property - The displacements of
target object’s part is close within some distance measure
in a space of: position of rotation center of the tool motion
p ∈ R2 (for 2D case), considered rotations of shaft r1,
rotations of tips scissors r2, r3, and scales of shaft a1 ∈ A
and end-effector a2 ∈ A.

The relation between motion parameters and variables
x, y can be expressed by function ϕ : (RnS ,RnE ) 7→(
R2, (0, 2Π) , A, (0, 2Π)

2
, A
)

defined as:

ϕ(x, y) =

 p
θS (DSx)
θE (DEy) .

 , (2)

A dynamic state of surgical tool defined by its position
and rotation was propoused in tracking approachby Zhou and
Payande [23]. However in this work the authors considered
much simpler and known to be less robust appearance model
grounded only on edge extractions. Additionally, the authors
did not use an information about structure of the tool, and
hence only a global orientation parameter was used. In some
other works the orientation of surgical tool was inexplicitly
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taken into account, for instance by examing variuous orienta-
tions of evaluation window [24].

C. Tracking framework

Our visual tracking problem is formulated within the
Bayesian inference framework [7], [20] with spatio-temporal
constraints [18], [19]. Similar to [23], we use the affine
motion model with six parameters to describe the object’s
state ut = [p, r1, a1, r2, r3, a2]. In the following, we define our
reconstruction problem in term of variables xt, yt and then we
recover signal ut form xt, yt using function ϕ defined in (2).
In the context of inverse problems, the target state variable ut

can be recovered by minimizing a penalized criterion:

argmin
xt,yt

Φ(xt, yt) + Ψ(xt, yt) (3)

ut = ϕ(xt, yt) (4)

where Φ is the so-called data fidelity term and Ψ is a reg-
ularization function incorporating a priori information, so as
to guarantee the stability of the solution w.r.t. the observation
noise. In the Bayesian framework, this allows us to compute
the maximum a posteriori (MAP) estimate [25] of the original
signal. In the context of our problem, the data fidelity term is
given by observation model, i.e.

Φ(xt, yt) = −
∑

(zj,t)
i
∈Ei,t,

j=1,...,N

(
xt
)>
D>S

(
zj,t
)
i

−
(
yt
)>
D>E

(
zN+1,t

)
i

(5)

while regularization term incorporates dynamic and structural
constraints, i.e. Ψ(xt, yt) = ΨS(xt, yt) + ΨD(xt, yt), where

ΨS(xt, yt) = −(xt)>B>yt (6)

ΨD(xt, yt) = Ω
(
ϕ(xt−1, yt−1)− ϕ(xt, yt)

)
(7)

and Ω denotes some distance measure.

III. PROPOSED ALGORITHM

One of the drawbacks of the general problem formulation
proposed in (3) is the computational complexity of a related
solver. To alleviate this shortcoming, we propose to concen-
trate on an interesting special case, where Ω is defined as an
indicator function ιC , where

ιC(u) =

{
0 if u ∈ C
+∞ otherwise

(8)

and C is a subset of
(
R2, (−2Π, 2Π) ,R, (−2Π, 2Π)

2
)

. Such
choice of distance measure is equivalent with an assumptions
that in some neighbourhood defined by C around ut all
the solutions are equally probably (from a point of view
of dynamic constraints) and outside this neighbourhood all
the solutions are not possible. Hence, the constraints on(
pt−1 − pt

)
translates into tracking search space to be reduced

to some region ”bounding box” around pt−1, i.e. set of blocks
Et include only Et,i combining N + 1 observed patches

zt,i centred in a bounding box defined by
(
pt−1 − pt

)
and

C. Similarly, the constrained imposed on [r1, a1, r2, r3, a2]

translates into problem over some smaller dictionary D̃S
t

and
D̃E

t
cut down from DS and DE by removing some of its

columns, i.e.

diS ∈ D̃S
t
⇔ θS

(
DSx

t−1)− θS (DS [x]i) ∈ CS (9)

diE ∈ D̃E
t
⇔ θS

(
DEy

t−1)− θS (DE [y]i) ∈ CE , (10)

where CS 3 C and CE 3 C denote convex sets defining an
expected range of [r1, a1] and [r1, r2, a2], respectively.

Fast numerical method for computing state estimates ut.
Initialization:
Initialize u(0) and C.
Find DS , DE , B using learning techniques from [15]
Main loop:
For t = 1, 2, . . .

Find D̃S
t
∈ DS , D̃E

t
∈ DE using (9,10)

Find B̃tas a smaller matrix cut down from B
taking into account (9,10)

Find Et around tool motion center ut−1

Find x̃t, ỹt as a solution of (1)
using dynamic programming

Find xt, yt as a complement of x̃t, ỹt

Find ut as a solution of (4)

IV. EXPERIMENTS

We evaluate our tracker on the task of in-vivo tracking of
the center of a single instrument in (i) Retinal Microsurgery
(dataset with 3 sequences [26]), and (ii) Laparoscopy (dataset
with 1 sequence [24]). Both datasets and tool center annota-
tions are publicly available. We train our structural correlation
filters on the first halves of the sequences and test them on
the reminaing halves, as in [27]. We manually initialize the
state variable u(0). We set interframe changes of scale a1, a2
to ×0.9 ×1.0, and ×1.1, of shaft rotation r1 to ±20◦ and of
end-effector rotation r2, r3 to ±10◦.

Evaluation metric We compare our tracker to state-of-the-
art methods in surgical tool tracking: POSE [27], ITOL [28],
DDVT [26], and our previous method from [15]. To this end,
we follow the standard evaluation metric of thresholded de-
tections to evaluate the proposed method. Namely, a candidate
detection ĉi is true positive when it falls within the circle of
radius T pixels that is anchored at the ground truth tool center
location ci, such that ‖ĉi − ci‖ < T . We refer to this metric
as Keypoint Threshold (KT), after [27].

Quantitative and qualitative results The results presented
in Fig. 2 show significant improvement of the proposed tracker
over our previous tracking-by-detection method [15]. Our
single-thredead, Matlab implementation requires ∼ 0.2s−1.0s
to process an image frame while [15] requires dozens of
seconds. Moreover, it is either on par or better than other
methods. Method ITOL is most competitive with respect to
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Fig. 1. On-line selection of correlation filters for articulated tool pose estimation. At given time instant and correlation filter, we select a compact subset of
correlation filters, which are in a priori defined proximity to the filter. We then match the selected filters to entry image and pick a new filter at given location
and scale that best matches current image evidence. As the filters encode pose-specific tool appearance, repeating the procedure generates a tracejctory (solid
line) of articulating and rotating tool (here, from Y-open to I-closed forceps). In practice, our experiments show that working already with a small fraction of
correlation filters out of a pool of hundreds of filters suffices to produce a stable tool track.

our tracker. Our tracker is better on RM1 but worse on Lapa
sequence. However, our method has richer output than ITOL.
Apart from tool center, it outputs end-effector articulation and
shaft orientation, as in [27]. Additionally, the results presented
in Fig. 3 show that our method can successfully track tool pose
(e.g., RM 1 and RM 2), recover from lost track (RM 3), while
being disrupted by smoke and strong shaft truncations (Lapa).

V. CONCLUSION

We have described a surgical instrument tracking procedure
that achieves state-of-the-art results on two public benchmarks.
It combines the strengths of structural, collaborative filter-
ing of dictionaries of discriminative features, generalization
properties of SVMs, and Bayesian tracking framework. In
particular, we have formulated an appearance model that
promotes consistent tool structures by: (a) enforcing shaft parts
to be represented by the same template; (b) favouring solutions
combining consistent co-appearance of end-effector and shaft
poses. Next, we have introduced orientation parameters and
scale, which jointly control the dynamics of the target surgical
instrument. Despite the inevitable appearance changes of the
tracked tool, the proposed scheme allows the tracker to output
tool pose and position reliably. In future work, we will extend
our work by considering more than two consecutive frames.
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Fig. 2. Quantitative results on Retinal Microsurgery and Laparoscopy datasets (best viewed in color) using KT metric. From left to right: RM1, RM2, RM3,
Lapa. Methods: POSE [27], ITOL [28], DDVT [26], Ours15 [15], Ours (black). Our tracker shows significant improvement over our previous tracking-by-
detection method (green). Moreover, it is either on par or better than other methods. Method ITOL is most competitive with respect to our tracker. Our tracker
is better on RM1 but worse on Lapa sequence. However, our method has richer output than ITOL. Apart from tool center, it outputs end-effector articulation
and shaft orientation.

Fig. 3. Qualitative results on Retinal Microsurgery (left) and Laparoscopy (right) datasets. Instead of searching for the tool in the whole image frame, our
method reduces the search space over location, scale, and appearance templates based on the detected tool pose in the previous frame. The tool pose serves to
initiate new bounding box around the whole tool as well as new appearance templates which are in proximity to the detected end-effector and shaft templates.
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