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Abstract—We present the theory of sequences of random

graphs and their convergence to limit objects. Sequences of

random dense graphs are shown to converge to their limit objects

in both their structural properties and their spectra. The limit

objects are bounded symmetric functions on [0, 1]2. The kernel

functions define an equivalence class and thus identify collections

of large random graphs who are spectrally and structurally

equivalent. As the spectrum of the graph shift operator defines

the graph Fourier transform (GFT), the behavior of the spectrum

of the underlying graph has a great impact on the design and

implementation of graph signal processing operators such as

filters. The spectra of several graph limits are derived analytically

and verified with numerical examples.
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I. INTRODUCTION

Graphs are one of the most important tools to model and
investigate the complex relations in modern networks. For
example, graphs have been used to model sensor networks
[1], biological networks [2], and social networks [3]. Re-
cently, much work has been done within the signal processing
community towards the development of a theory of signal
processing on graphs [4], [5]. The objects of study in graph
signal processing are real valued signals defined on the nodes
of a graph. As the graph is a discrete domain, the typical
notions of shifts in time and space need to be revisited [4],
[3]. Thus, a graph shift operator is introduced which captures
the structure of the network. A fundamental assumption of
graph signal processing is that the structure of the network has
some explanatory power for how signals evolve on its nodes.
Specifically, the eigenvectors of the shift operator define the
graph Fourier basis and its eigenvalues the Fourier coefficients
leading to the definition of the fundamental graph fourier
transform (GFT).

As the graph structure influences how signals defined on its
vertices evolve, several questions related to the structure of the
graph naturally arise. Firstly, as most graph signal processing
applications depend on the spectrum of the graph, how do
changes in the network topology influence the spectrum of the
graph? Moreover, if the graph is random, and possibly time
varying, is its spectrum stable?

This paper investigates a class of dense random graph
models and their properties with a view towards signal pro-
cessing on large and possibly time varying graphs. Specifically,
the notion of convergence of sequences of random graphs is
introduced [6], [7]. This class of random graphs is shown to
converge to a limit object [6]. This limit object is a symmetric
function supported on [0, 1]2. This symmetric function induces
an operator whose spectrum coincides with that of the random
graph [8]. The central argument of this paper is thus two fold.

Given that it is the spectrum of the shift operator which is used
to perform graphical signal processing tasks, and sequences
of random graphs converge spectrally to a limit object, it is
quite clear than an entire equivalence class of graphs may
be treated exactly the same with respect to signal processing
tasks on those graphs. And secondly, if the graph is time-
varying, so long as the graph is both large enough and varies in
accordance to the underlying kernel model, then the spectrum
of the shift operator is stable. Moreover, bounds for how much
a graph induced by a uniform random subsampling scheme can
structurally differ from the larger graph have been derived.
This provides a valuable insight into topology identification,
where the natural question of how much one can subsample a
graph and still infer its structure remains open.

Throughout this paper bold upper-case letters denote ma-
trices, bold lower-case letters denote vectors, K is a base field,
upper case letters denote constants, lower-case letters denote
variables, (·)T is the transpose operator, and caligraphic letters
denote graphs and their limit objects.

II. GRAPH SIGNAL PROCESSING

Consider an undirected graph G = (V,E) where V =

{v1, · · · , vN} is the set of vertices or nodes, and E =

{(v
i

, v
j

)} is the set of edges, whereby (v
i

, v
j

) 2 E if v
i

and v
j

are connected. A graph signal x 2 RN is observed
on the vertices of the graph. Several different operators have
been proposed as “shift” operators. For undirected graphs, the
shift operators are symmetric, and capture the graph structure
in that S

ij

= 0 if vertices i and j are not connected, and
some real number if they are connected. Examples are the
scaled adjacency matrix, 1

N

A, and the normalized Laplacian
D�1/2LD�1/2, where L is the Laplacian matrix and D is
the degree matrix. Since the shift operators are symmetric,
they admit a full complement of orthonormal eigenvectors
and associated eigenvalues, S = Q⇤QT . The graph Fourier
transform (GFT) is then defined as ˆx = QTx, and the inverse
GFT is similarly defined as x = Qx̂.

One of the fundamental tasks in graph signal processing is
filtering. A graph filter H is an operator which acts to attenuate
or amplify the graph fourier coefficients �

k

. The general form
of a graph filter implemented in a universal fashion

Hx =

NX

n=1

H(�
n

)hx,q
n

iq
n

(1)

where H(�
n

) , hHx,q
n

i/hx,q
n

i. Graph filters can also be
approximately implemented in a distributed fashion through a
matrix polynomial approach. We can define a k-order graph
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finite impulse response (FIR) filter as the following

H = h0I+

KX

k=1

h
k

Sk. (2)

The polynomial fitting problem can be stated as

min

hk

NX

n=1

|
KX

k=0

h
k

�k

n

�H(�
n

)|2. (3)

and rewriting (3) in matrix vector notation we obtain

min

h
kˆh� hk (4)

where h is the vector of polynomial coefficients, ˆh is the vector
representation of H(�

n

), and  is a N ⇥ K Vandermonde
matrix with rows generated by �

n

. Assuming that �
n

are
distinct, the rank of  is min{N,K}, and thus depending
on the dimensions N and K the solution to (4) can be given
by the inverse or the pseudo-inverse.

In order to specify the desired filter response, it is clear
from (1)–(4) that knowledge of the range of eigenvalues of
the shift operator is required. One can design a filter response
without knowledge of the eigenvalues of S, but not with
confidence that the filter will have the desired effect. For
example, if one were to design a high-pass filter with a cut-
off higher than the largest graph Fourier coefficient, the effect
would not be that of a “high-pass” filter.

In the following section we introduce a general class of
dense random graph models. It is shown that even though the
graphs are random, they converge in an appropriate sense to
limit objects which both determine the structure of the graph
and the spectrum of the graph. These models can be estimated
from an observed graph, and thus provide valuable information
for the implementation of graph signal processing algorithms.

III. RANDOM GRAPH MODELS AND GRAPHONS

A. Kernel-based Models

Signal processing on graphs is inspired by and endeavors
to work on real-world networks. Much literature has been
dedicated to the modeling of real-world networks with ran-
dom graph models. The internet, social networks, mutual
citation, and the spread of disease can all be modeled with
random graphs. However, these networks are typically not
well modeled by the classical Erdös-Renyı́ random graphs
[10], [12]. Real-world networks typically have heavy-tailed
degree-distributions, exhibit “small-world” phenomena, they
tend to be clustered, and have neighborhood density higher
than the average edge density [10], [11], [12]. This has given
rise to new, more general random graph models, one of which
are Kernel-based models [13]. These are characterized by the
use of a symmetric kernel function to generate probabilities
controlling the formation of edges between nodes.

A kernel random graph is a triple G(N,W, µ) where N is
the number of vertices in the graph, W : [0, 1]2 ! [0, 1] is
a symmetric measurable function, and µ is a random variable
defined on [0, 1]. To generate a graph from this triple, for each
pair of vertices v

i

and v
j

a sample is drawn from µ. Then
each realization of µ is treated as a coordinate and mapped to

a probability by the symmetric function W . This probability
is then used to perform a Bernoulli trial to establish if the two
vertices are connected, in a manner analogous to the formation
of an Erdös-Renyı́ graph. The measurable symmetric function
W is called a Graphon by Lovasz and Szegedy. In this paper,
we assume that µ ⇠ U [0, 1].

Conversely, the adjacency matrix of a graph G induces
a graphon in the following way. For any weighted graph
with vertex weights ↵

n

, and edge weights �
ij

, normalize the
weights such that

P
n

↵
n

= 1. Then, to construct a symmetric
function, for each element of the adjacency matrix a

ij

place a
square of area ↵

i

⇥↵
j

in the corresponding position of [0, 1]2,
in which the symmetric function will be the constant edge
weight �

ij

. This graphon is denoted WGn .

B. Graph Sequences and Convergence

Consider a sequence of random graphs (G)
n

with
|V (G

n

)| ! 1 being drawn from a kernel model G(N,W, µ).
A natural question is whether this sequence converges to any
particular object. If so, then while the graph in question is still
random, its emergent properties would remain deterministic.
The graph properties that we consider in this paper are
homomorphism densities. The homomorphism density of a
simple graph F with K nodes in a given graph G with N
nodes is defined as

t(F ,G) = hom(F ,G)
hom(F ,K

N

)

=

hom(F ,G)
NK

(5)

where hom(F ,G) is the number of adjacency preserving maps
(homomorphisms) V (G) ! V (F), and K

N

is the complete
graph on N nodes. Roughly speaking t(F ,G) is a ratio
between the number of copies of F in G and the number
of copies of F in the complete graph on N nodes. The
graph homomorphism densities of different graphs F in G
provide structural information about the graph. For example, if
F = K3 then t(F ,G) is the triangle density of G. A sequence
of graphs (G

n

) is said to be convergent if t(F ,G
n

) converges
for any simple graph F [6].

We can further use the symmetric functions W to define
a limit object of the graph sequence (G

n

). Let W be a
bounded symmetric function W : [0, 1]2 ! [0, 1], and F be
a simple graph with V (F) = {1, · · · ,K}. Then the graph
homomorphism limit of F in W is defined as

t(F ,W) =

Z

[0,1]K

Y

(i,j)2E(F)

W(x
i

, x
j

)dx (6)

The following two theorems, proven in [7], form the funda-
mental link between convergent graph sequences and graphons,
and hence the link between observed graphs and explanatory
graphon models.

Theorem 1. For every convergent graph sequence G
n

there
exists a bounded measurable symmetric function W : [0, 1]2 !
[0, 1] such that lim

n!1
t(F ,G

n

) = t(F,W)

Theorem 2. The graph sequence (G(n,W, µ)) is convergent
with probability 1, and its limit object is the function W .
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Thus the graphon itself can be used to study the properties
of the graph sequence. As will be observed in the next section,
these are not limited to structural properties of the graph, as
we can use the graphon to calculate the spectra of the graphs
in (G)

n

as n ! 1.

IV. HILBERT-SCHMIDT OPERATORS

Definition 1. Let X and Y be intervals in R and W : X⇥Y !
K. If

R
X

R
Y

|W(x, y)|2dxdy < 1 then W is a Hilbert-Schmidt
Kernel Function.

Graphons, as defined in the previous section are clearly
Hilbert-Schmidt kernel functions, being both bounded and
measurable. Hilbert-Schmidt kernel functions induce bounded
integral operators on the space of square integrable functions
L2

(Y ) ! L2
(X). In the case of graphons, they induce an

integral operator T : L2
[0, 1] ! L2

[0, 1]

Tf(x1) :=

Z 1

0
W(x1, x2)f(x2)dx2. (7)

Since the graphons are required to be symmetric, the
operators they induce are self-adjoint. This, combined with
the fact that all Hilbert-Schmidt operators are compact [9]
implies that the spectrum of the operator (7) consists of a
finite number of real-valued eigenvalues. The eigenvalues of
(7) and corresponding eigenfunctions can be found by solving
the resolvent equation

�f(x1) =

Z 1

0
W(x1, x2)f(x2)dx2 (8)

for f(x) and �, given the kernel W . Since we know from
Theorems 1-2 that graph sequences converge to their limit
object, and that every graph sequence has a limit object,
knowledge of the spectrum of (7) provides knowledge of the
spectrum of the graphs in (G)

n

, particularly when the number
of vertices becomes large. Indeed, it is not difficult to see from
the induced graphons WGn that for “unweighted” graphs, the
spectrum of W is the spectrum of the normalized adjacency
matrix WGn as n ! 1. Theorem 11.53 in [12] gives a formal
statement and proof of this fact. Similarly, the degree matrix is
also determined by the graphon, and thus, the spectrum of the
graph Laplacian can also be investigated through the resolvent
equation. We restrict our attention to the normalized adjacency
matrix in this paper.

V. SPECTRA OF RANDOM GRAPH MODELS

In this section we solve the resolvent equation (8) for
several candidate graphons which can be used to describe
various random graph models.

A. Erdös-Renyı́

Erdös-Renyı́ graphs in which the edges are characterized
by independent and identically distributed Bernoulli trials
parameterized by an “edge” probability p. Thus, the kernel
graph model G(N,W, µ) that describes this is G(N, p, µ)
where µ can be any probability distribution with support on

[0, 1] without changing the resulting graph sequence (G)
n

.
Substituting this kernel into the resolvent equation (8) we
obtain

�f(x1) = p ·
Z 1

0
f(x2)dx2. (9)

There are two possibilities regarding the integral in (9).
Z 1

0
f(x2)dx2 = 0 ) � = 0

and any function which integrates to 0 is a corresponding
eigenfunction.

Z 1

0
f(x2)dx2 6= 0 ) �f(x1) = c · 1(x1)p (10)

where 1(x1) is the indicator function on [0, 1] and c 2 R.
From (10) it is clear that any constant function c · 1(x1)

is an eigenfunction corresponding to the eigenvalue � = p.
Requiring that kf(x)k = 1 establishes uniqueness of the
eigenfunction. Thus the multiplicity of the eigenvalue � = p
is 1.

B. Block-Stochastic Models

The Erdös-Renyı́ model clearly does not allow for the for-
mation of communities, or heterogeneous degree distributions
with very high probability [12]. To better model these features
of real-world networks, block-stochastic models (BSM) have
been proposed [14]. Consider the extreme case where we wish
to model two communities with average edge density p1 and
p2 within the communities respectively, and no connections
between the communities. Let ⌘1 and ⌘2 denote the proportion
of nodes in each community. Then a corresponding graphon
to this block stochastic model could be a constant p1 func-
tion on the square [0, ⌘1]

2 and a constant p2 on the square
[⌘1, 1]

2. Note that this graphon is not unique: any symmetric
permutation of it will be equivalent. Assume that µ ⇠ U [0, 1],
then any symmetric function which has a constant value p1
on an area equal to ⌘21 , and p2 on an area (1 � ⌘1)

2, while
0 elsewhere will produce an equivalent graph sequence. Thus,
graphons form an equivalence class.

We can build on the spectral analysis of the Erdös-Renyı́
model to analyze the spectrum of the Block Stochastic Model.
Substituting the proposed kernel W into (8), and defining the
indicator functions

1
⌘1(x1) =

⇢
1 if 0  x1  N1

0 o.w.

1
⌘2(x1) =

⇢
1 if ⌘1  x1  1

0 o.w.

(8) can be rewritten as

�f(x1) = p1 ·
Z

⌘1

0
f(x2)dx2 · 1⌘1(x1)

+ p2 ·
Z 1

⌘1

f(x2)dx2 · 1⌘2(x1) (11)
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To analyse (11) we need to consider several cases. Define
I1 =

R
⌘1

0 f(x2)dx2 and I2 =

R 1
⌘1

f(x2)dx2. Let I1 = c 6= 0

and I2 = 0. Then f(x1) = 1
⌘1(x1) is an eigenfunction

corresponding to the eigenvalue � = p1 ·⌘1. Similarly, 1
⌘2(x1)

is an eigenfunction corresponding to the eigenvalue � = p2 ·⌘2.
Trivially, 0 is also an eigenvalue corresponding to functions
in which I1 and I2 evaluate to 0. The question then arises
of when both I1 and I2 are non-zero, and not necessarily
equal. However, this will lead to candidate eigenfunctions
which are constant on the two intervals [0, ⌘1] and [⌘1, 1]
with distinct eigenvalues from p1 and p2. However, this leads
to a contradiction as eigenfunctions of a self-adjoint operator
corresponding to distinct eigenvalues must be orthogonal as

hTf1(x), f2(x)i = hf1(x), T f2(x)i
h�1f1(x), f2(x)i = hf1(x),�2f2(x)i

(�1 � �2)hf1(x), f2(x)i = 0

hf1(x), f2(x)i = 0. (12)

Thus there are only two non-zero eigenvalues corresponding
to the eigenfunctions c · 1

⌘1 and c · 1
⌘2 .

C. Exponential Model

Block Stochastic Models are useful for modeling real-
world networks which have distinct communities with rela-
tively homogeneous edge density within the communities and
little to no connection between the communities. In some
networks this model may be unspecified in that the degree dis-
tribution may be heterogeneous. In such a case where there is
a continuous spread of vertex degrees throughout the network,
a continuous graphon model makes sense. Consider the sym-
metric exponential graphon W(x1, x2) = e�(�1(x1+x2)+�0).
Then

�f(x1) =

Z 1

0
W(x1, x2)f(x2)dx2

=

Z 1

0
e�(�1(x1+x2)+�0)f(x2)dx2

= e�(�1x1+�0)

Z 1

0
e�(�1x2)f(x2)dx2 (13)

(14)

implying that f(x1) = e��1x1 is an eigenfunction. Substituting
this function into the integral in (13) one obtains

�f(x1) = e�(�1x1+�0)

Z 1

0
e�(2�1x2)

dx2

=

1

2�1
(1� e�2�1

)e�(�1x1+�0) (15)

from which it is clear that 1
2�1

(1 � e�2�1
)e��0 is the corre-

sponding eigenvalue. Observing that
R 1
0 e��1x2f(x2)dx2 is the

inner product between e��1x2 and f(x2) (where (·) denotes
the adjoint of a function) in L2

[0, 1], we can then hypothesize
the existence of infinitely many eigenfunctions corresponding
to � = 0, as there are infinitely many functions in L2

[0, 1]
orthogonal to any given function in that space.

The exponential graphon has the benefit that the homomor-
phism density (6) is easily computable in closed form for any
simple graph F , and depends only on the parameters �1, and
�0.

t(F ,W) =

e�|E(F)|�0

Q
k

i=1 di�
K

1

kY

i=1

(1� e�di�1
) (16)

where d
i

is the degree of node i in the graph F . To arrive
at (16) from (6) note that, for the chosen graph F , the
product

Q
(i,j)2E(F ) W(x

i

, x
j

) contains the graphon function
for nodes i and j if there is an edge between these nodes
in the graph. Noting that the exponent is separable yields the
constant term e�|E(F)|�0. Further noting that

Z 1

0
e�d�x

dx =

1

d�
(1� ed�) (17)

the derivation of (16) is complete. The homomorphism densi-
ties are testable graph parameters in that 8✏ > 0 9 an integer
k0 such that for all graphs G on k > k0 nodes, a random set
of vertices X in G satisfies

|t(F ,G)� t(F ,G[X])| < ✏ (18)

where G[X] is the induced graph on the set X . We direct the
reader to Theorem 5.1 in [11] for the proof of this statement.
Thus, a random sub-set of size k0 for graphs of size at least
k which has the same homomorphism densities for every
subgraph F of an observed graph G. Moreover, probabilistic
bounds on the error of t(F ,G[X]) as a function of the size of
the sample X have been derived [12], and efficient algorithms
for the testing of graph properties have been developed [15],
[16]. Thus, by subsampling the observed large graph G, and
adjusting �0 and �1 in (16) to fit the observed homomorphism
densities, an estimate of W can be obtained.

VI. SIMULATION RESULTS

Here we verify the findings of the previous section in
generating large graphs from the specified kernel graph models
and calculating their eigenvalues. For each kernel we generate
graphs with an edge size of N = 1000, and plot the results of
100 trials in a log-histogram showing the positive eigenvalues
of the normalized adjacency matrix 1

N

A

A. Erdös-Renyı́

Fig. 1 shows the positive spectrum of the normalized
adjacency matrix corresponding to the kernel graph model
G(1000, 0.9). It can be observed that there is one eigenvalue
that is significantly different from 0 being � = p = 0.9. The
range of the eigenvalues around 0.9 is 0.8966 to 0.9005.

B. Block-Stochastic Models

Fig. 2 shows the positive spectrum corresponding to a
Block Stochastic model in which there are two distinct com-
munities. In the first community, which contains ⌘1 = 0.3 of
the vertices in the network, the probability of an edge between
two vertices is p1 = 0.9. In the second community which
contains ⌘2 = 0.7 of the vertices, the probability of edge
connection is p2 = 0.2. As was predicted in the previous
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section, there are two tightly located clusters of non-zero
eigenvalues at approximately ⌘1p1 = 0.3 · 0.9 = 0.27 and
⌘2p2 = 0.7 · 0.2 = 0.14. The spread of the eigenvalues is
wider for the community with fewer nodes, despite a much
higher probability of edge formation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
6

100

101

102

103

104

105
Log Histogram of Singular Values of G(1000,0.9)

Fig. 1. Positive spectrum corresponding to Erdös-Renyı́ graph with N =
1000, and p = 0.9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
100

101

102

103

104
Singular Values of Block Stochastic Model p1 = 0.2 p2 = 0.9

Fig. 2. Positive spectrum corresponding to BSM with two communities
of 300 and 700 vertices, and homogeneous edge density of 0.9 and 0.2
respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
6

100

101

102

103

104
Singular values of G(1000,e-(x

1
+x

2
))

Fig. 3. Positive spectrum of random graph model with kernel function
e�(x1+x2).

C. Exponential Model

Fig. 3 shows the positive spectrum of the exponential model
G(1000, e�(x1+x2)

). As �1 = 1, the previous section’s finding

predict that there should be one non-zero eigenvalue 1/2(1�
e�2

) = 0.4323. We observe a tight cluster around this value
in the positive spectrum.

VII. CONCLUSIONS

The theory of sequences of dense random graphs and their
convergence to limit objects has been introduced and its con-
sequences for signal processing on graphs has been explored.
The spectra of several random graph models were derived
from the induced integral operators of their limit objects.
Numerical results show a close correspondence between the
predicted eigenvalues of the graph limit and observed random
graphs generated from the corresponding random graph model.
Simulation results support the conclusion that random graphs
of sufficient size which are generated from the same model
can be treated as equivalent.
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