2017 25th European Signal Processing Conference (EUSIPCO)

Multiple DOA Estimation Based on
Estimation Consistency and Spherical Harmonic
Multiple Signal Classification

Sina Hafezi, Alastair H. Moore and Patrick A. Naylor
Department of Electrical and Electronic Engineering
Imperial College London, UK
{s .hafezil4, alastair.h.moore, p. naylor}@imperial .ac.uk

Abstract—A common approach to multiple Direction-of-
Arrival (DOA) estimation of speech sources is to identify Time-
Frequency (TF) bins with dominant Single Source (SS) and
apply DOA estimation such as Multiple Signal Classification
(MUSIC) only on those TF bins. In the state-of-the-art Direct
Path Dominance (DPD)-MUSIC, the covariance matrix, used as
the input to MUSIC, is calculated using only the TF bins over a
local TF region where only a SS is dominant. In this work,
we propose an alternative approach to MUSIC in which all
the SS-dominant TF bins for each speaker across TF domain
are globally used to improve the quality of covariance matrix
for MUSIC. Our recently proposed Multi-Source Estimation
Consistency (MSEC) technique, which exploits the consistency
of initial DOA estimates within a time frame based on adaptive
clustering, is used to estimate the SS-dominant TF bins for each
speaker. The simulation using spherical microphone array shows
that our proposed MSEC-MUSIC significantly outperforms the
state-of-the-art DPD-MUSIC with less than 6.5° mean estimation
error and strong robustness to widely varying source separation
for up to 5 sources in the presence of realistic reverberation and
sensor noise.

I. INTRODUCTION

Multiple source Direction-of-Arrival (DOA) estimation is
considered a fundamental problem in acoustic signal process-
ing due to its wide range of applications including source lo-
calization/separation/tracking, speech enhancement, SONAR,
SODAR, robot audition and dereverberation. The formulation
and implementation of most DOA estimators depends on
the scenario and the type of sensor array. In this work we
are interested in challenging acoustic scenarios consisting of
multiple simultaneously active stationary speech sources in
the presence of realistic reverberation and sensor noise. We
assume the number of sources is known a priori but their
minimum angular separation is not. In particular we consider
methods targeted at Spherical Microphone Arrays (SMAs) [1],
[2] where the signals are processed in the Spherical Harmonic
(SH) domain.

There are two categories of approach to Multi-Source (MS)
DOA estimation. (1) MS-based DOA estimation [3] in which
the signal model is formulated based on the assumption of
multiple sources. The MUItiple SIgnal Classification (MUSIC)
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[3] method decomposes the covariance matrix of the observed
signal into signal and noise subspaces using eigenvalue de-
composition in which the top N, eigenvalues span the signal
space where the N, is the known number of active sources.
Due to narrow-band nature of MUSIC, for high accuracy
it is performed in Time-Frequency (TF) domain. In case of
multiple speech sources, MUSIC is not always preferred as
the number of simultaneously active sources is not consis-
tent due to sparseness of speech. (2) Single-Source (SS)-
based DOA estimation: a common approach is to assume
W-disjoint orthogonality [4] whereby at each TF bin it is
assumed that only a single source is active. In practice, many
TF bins contain significant contributions from waves arriving
from multiple directions, either due to overlapping sources
or reflections. Also many bins contain no active sources. A
number of methods have been proposed to identify those TF
bins, referred to as SS-bins in this work, where only a SS is
significantly present [S]—[8].

SS-based approaches consist of three stages: (1) SS-bin
detection, (2) SS DOA estimation on selected bins and (3) final
DOAs extraction. The state-of-the-art Direct Path Dominance
(DPD)-MUSIC [5] uses DPD test as SS-bin detection and SS
MUSIC as DOA estimator on the selected bins. The DPD
test selects the bins in which direct path of a single source
has significant dominance where the metric of dominance is
measured as the Singular Value Ratio (SVR) between the two
largest singular values of the signal subspace, and significance
of dominance is defined by a threshold.

An alternative way to detect SS-bins is our recently
proposed Multi-Source Estimation Consistency (MSEC) [9]
which was initially proposed as a post-processing technique
for accuracy enhancement of any DOA estimator in the TF
domain. In MSEC, a computationally fast SS DOA estimator
such as Pseudo-intensity vectors (PIVs) [10] is first applied on
all TF bins and the most consistent DOA estimates are selected
using a weighting strategy. The selected DOA estimates are
clustered using K-means clustering to obtain the final DOAs
as the centroid of clusters where each cluster is associated
to a source. Considering the TF bins of the clustered DOA
estimates, we have an estimate of the SS-bins associated with
each source.
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In DPD-MUSIC, the covariance matrix is calculated over
a local TF region centred on a bin which indicates the SS-
assumption over a local TF region. Unlike DPD, MSEC
provides an estimate of the SS-bins assigned to each speaker
across the entire TF domain. The idea in this work is to
remove the TF-domain regional limitation in DPD-MUSIC
by replacing DPD with MSEC as the pre-processing stage to
improve the quality of covariance matrix used in the MUSIC
algorithm, particularly for the case of multiple simultaneously
active speech sources.

This paper is structured as follow: Section II briefly re-
views the technical background of MUSIC and DPD-MUSIC.
Section III presents the pre-processing stage MSEC and our
novel technique MSEC-MUSIC and finally in Section IV we
compare our proposed technique with the state-of-the-art.

II. TECHNICAL BACKGROUND

In this section, we briefly define our signal model in the
SH domain and review MUSIC and alternative approaches to
DPD-MUSIC.

A. Multi-Source Signal Model

In the Short-time Fourier Transform (STFT) domain at
frequency k£ and time frame 7, consider the vector of source
signals S(m,k) = [S1(7,k)...Sn(r,k)]" and true DOAs
Qu = [Qu1 ... Qun] arriving from N plane waves associated
with sources in the far-field. The SH transform of the signals
gives [11]

aim (7, k) = Y7 (Qu)S(7, k) + Vim (7, k) (1)
and
YlmT (Qul)
Y () = : ) )
Yim” (Qun)
T
where ay, = [aoo, a1(-1), @1(0), @1(1)s---, arr]  are the

eigenbeams of order [ and degree m (satisfying |m/| < [) with
maximum SH order L, (.)¥ indicates Hermitian transpose,
Vim(7,k) is a (L + 1)2 x 1 column vector representing
the residual due to noise and reverberation and Y, =
[Yoo, Yi—1, Yi0), Yi(1)5- -5 YLL]T are the spherical har-
monic basis functions [11],

Yim () = \/(%4:: 2 mplm (cos (0)) eimw, 3)

where ¢ and 6 denotes the azimuth and inclination respec-
tively, P}, is the associated Legendre function and i2 = —1.
Note that (7, k) and () are omitted respectively for aj,, and
Y for notational simplicity.

B. Spherical Harmonic MUSIC

In the TF domain, the covariance matrix of eigenbeams is
given as

R(T7 k) =K [alm(T7 k)almH(T’ k)]
=Y (Qu)Rs(7, k)Y () + Ry(1,k), (4
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where Rg = F [SS*] and R, are respectively the direct paths
and residual (noise and reverberation) covariance matrices and
E[] denotes the expectation.

For any STFT bin (7, k) with only a single source active,
using Singular Value Decomposition (SVD) the covariance
matrix of observed eigenbeams is decomposed as

R(7, k) = UZ U + U, B, U7, (5)

where Uy is the one-dimensional signal subspace matrix, Uy,
is noise subspace with (L + 1)? — 1 dimensions and X is the
rectangular diagonal singular value matrix. Note that (7, k) are
also omitted here for notational simplicity.

Using the estimated noise subspace, the MUSIC spectrum
for a single source is given as [3]

1

Pyusio(r, k, Q) = 10 (7, k) Y1 () ]|2

(6)

where (.)* indicates complex conjugate.

C. DPD-MUSIC for Multiple Sources

In DPD the covariance matrix in (4) is approximated as the
average covariance matrix over a local TF neighbourhood [5]

Jr—1Jp—1
1 . .
Rppp(7, k) A Z Z aim (7 + jr, k+ k) (D)
TP =0 ji=0

X almH(T + jT; k+ jkr)v

where J; and Jj are the width (number of bins) of averaging
window over time and frequency respectively. The TF bins
with significant contribution from a direct path are selected as

TDPD = {(T, k‘) :

where

erank (Rppp(7,k)) =1}, (8)

erank (Rppp(7,k)) = 1if nppp (7, k) > ¢ )

is the effective rank, the SVR nppp is the ratio of the largest
and the second largest singular values of Rppp and € is a
threshold. The two alternative approaches [5] to apply MUSIC
on the outcome of DPD test are discussed next.

1) Incoherent DPD-MUSIC: 1In the first approach the MU-
SIC spectra in (6) are simply summed over the selected TF
bins (7,k) € Tppptest SO that

2

(7,k)EYDPDtest

Pincon—nmusic(Q) = Pyusie(r,k, ), (10)

where the set of Nhighest peaks in the final spectrum indicates
the overall estimated DOAs.

2) Coherent DPD-MUSIC: The second approach performs
coherent fusion of the directional information from the se-
lected TF bins. The set of one dimensional signal spaces
from the selected TF bins, {Us (7, %)}, ) crppp» ar€ clustered
using one-run K-means clustering with random initialization
into N clusters with centroids {US"}TJ:]:1 where each centroid
signal space is associated with one speaker. The DOA of each
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individual speaker is selected as the global peak in the coherent
MUSIC spectrum of the speaker n which is given as

1
(U™ Yim* ()2
B 1

YlmT(Q)(I - Usn (Usn)H)Ylm*(Q)
III. PROPOSED METHOD

(1)

Pg)h—MUSIC(Q> =

In this section we propose an alternative approach to calcu-
lation of covariance matrix for MUSIC. In our technique we
aim to enhance the directional information for each source
individually by grouping the SS-bins associated with each
speaker and calculating a covariance matrix per speaker. First
we briefly present our previously proposed MSEC technique
that is used to estimate and group the SS-bins for each speaker
and then we present our proposed technique MSEC-MUSIC
which uses the outcome of MSEC as the input to MUSIC.

A. MSEC

Our recently proposed technique MSEC [9] is used as a
post-processing stage after DOA estimation for all TF bins.
The initial DOA estimates (one per TF bin) can be obtained
by any SS DOA estimator such as PIV [10], as used in this
work, Augmented Intensity Vectors (AIVs) [12], [13], Steered
Response Power-based methods [14] or SS MUSIC. The initial
DOA estimates are weighted based on their consistency within
a time interval and the ones with the strongest weights are
selected as the most consistent DOAs using the assumption
of stationary sources. MSEC is based on MS assumption in
a time frame where the number of active incoherent sources
is unknown. It uses the properties of distribution of DOA
estimates as the metric of consistency. Adaptive clustering is
used to efficiently group the DOA estimates since the number
of active sources in time frame is unknown.

1) Adaptive Clustering: In order to have strong concentra-
tions of DOA estimates for the purpose of robust clustering,
adaptive clustering at frame 7 is performed on data set
Unrspe(T) including all DOA estimates from frame 7 — T
to 7, which is defined as

Uynispe(r) ={a(t, k) : Vk, t € {r,7—1,...,7=T}}, (12)

where u(7, k) is the initial estimated DOA unit vector.

K-means for K = {1,..., K4} is performed on data
set nrspe(r) with random initializations. Using Akaike
Information Criterion (AIC) [15] which trades-off distortion
against the model complexity, the best number of clusters,
K., is estimated as [16]

K. (1) = arg m}én [RSS(K (7)) + 2QK(7)],  (13)

where RSS(.) is the residual sum of squared (sum of squared
distance of each member to its cluster centroid) and () denotes
the number of dimensions of centroid which leads to QK
parameters for K clusters. This results in the optimum number
of clusters K.(7), the clusters {Si(T)}ficl(T) and the centroids

unit vector {éi(T)}ficl(T) where ¢ is the cluster index.
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2) Weighting: The DOA estimate at each TF bin is assigned
a cluster weight and a member weight. The cluster weight
representing the normalized measure of concentration in its
associated cluster is
Di(7)
Yusec(r, k) =1— =
and the member weight representing how close it is to its
associated centroid is

,u(r, k) € Si(r), (14)

Z(ﬁ(T’ k)a ¢; (T))

s

/\MSEc(T,k‘):l— ,ﬁ(T,k))ESi(T), (15)

where /(.) denotes the angle between two vectors.
The MSEC weight in the TF domain is then formed as

wysec(T, k) = Yusec(T,k)Avsec(T, k). (16)

Having performed MSEC, the DOA estimates from the bins
associated with the top M % strongest MSEC weights over all
TF bins are selected.

B. MSEC-MUSIC

Having obtained the selected DOA estimates using MSEC,
for the purpose of robust clustering, the potential outlier DOAs
are removed if the average cardinality over a spatial window of
1 x 1 degree (azimuth X inclination) centred on DOA estimate
is below a threshold . Applying K-means with K = N on
DOA estimates after outlier removal, we obtain the clusters
{8, }_, and the centroids unit vectors {&,}»_;. The MSEC
covariance matrix for source n is formed using the SS-bins
across all TF domain that are assigned to source n

LY am(r Rawm (1),

o (17)
(1,k)ESn

RXISEC =
|5

where |S,,| indicates the number of members in cluster S,.
Using SVD on R, g as in (5), the MSEC-MUSIC spectrum
for each source is given as

1
1O Yim " ()12

in which the global peak indicates the estimated DOA for that
source.

(18)

PJTCISE‘CfMUSIC(Q)

IV. EVALUATIONS

An evaluation of methods were conducted using simulation
for a 5 x 6 x 4m shoebox room with Tgg = 0.4s [17].
The Spherical Microphone arrays Impulse Response Generator
(SMIRgen) [18] based on Allen & Berkley’s image method
[19] was used for 32-element rigid SMA with radius of 42 cm
placed at (2.52,4.48,1.45) m. N sources were randomly
placed with azimuth interval of A¢, at distance of 1 m from
the centre of SMA on the same horizontal plane as SMA. Per
each pair of N and A¢, we used 100 random trials where
in each trial the first azimuth was randomly selected from
a uniform circular distribution around the SMA. The source
signals consist of different anechoic speech signals randomly
selected for each trial from the APLAWD database [20]. The
active level of each speech source according to ITU-T P.56
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Fig. 1: Mean error of MSEC-MUSIC, relative and absolute DPD-MUSIC for varying N and A¢.

[21], as measured at omnidirectional eigenbeam, is set to be
equal across all trials. Spatio-temporally white Gaussian noise
is added to the microphone signals to produce a signal to
incoherent noise ratio (iSNR) of 25 dB for each source. A
sampling frequency of 8 kHz was used with frame length of
4 ms and 50% overlapping of time frames.

MSEC was performed on initial DOA estimates obtained by
PIV [10] DOA estimator. We empirically chose K., = 4,
T = 4 frames, 7 = 0.3 for the average cardinality threshold in
outlier removal. DPD test had .J = 4 and .J, = 5 as the size of
its averaging window in the TF domain in (7). We empirically
chose the threshold in (9) as ¢ = 6 which also matches the
recommended value in the original paper [S]. The MUSIC
spectrum in (11) and (18) was calculated with 1° resolution
across azimuth and inclination (360 x 181). Incoherent DPD-
MUSIC was excluded from our evaluation since studies in [13]
show that incoherent DPD-MUSIC fails in case of low angular
separation of sources as the two peaks associated with two
adjacent sources can be merged into one peak over summation
of MUSIC spectra which causes the second highest peak to
be detected far from the sources.

In order to avoid any ambiguity due to data association
uncertainty in our results, best case data association was used
to obtain the mean estimation error between true DOAs and
estimated DOAs.

The original DPD test is based on absolute selection due
to comparison of SVR with a fixed threshold. This results

(a) MSEC (b) DPD coh
20 20
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15 15 YN
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0
510 25 50 75 100
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mean error (deg)
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(6]
mean error (deg)
>

)]

0
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Fig. 2: Mean estimation error as a function of M for MSEC-
and relative DPD-MUSIC for varying N and A¢ = 45°.
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in reduction of selected TF bins as the number of sources
increases for DPD unlike MSEC which is based on relative
selection of top M% best DOA estimates. For the purpose
of fairness in the selection process in our evaluation, we also
include an alternative DPD-MUSIC based on relative selection
which selects the TF bins with the top M% SVR, nppp.

A. Effect of selection percentage

In this section, we evaluate the effect of selection percentage
for MSEC and DPD-MUSIC with relative selection in order
to find the optimum M for both methods.

Figure 2 shows the mean estimation error as a function of
selection percentage M for N = {2,3,4,5} and A¢ = 45°.
As we can see in Fig. 2, low (< 10%) and high (> 50%) values
of M respectively cause underestimation and overestimation
of number of bins which both result in high estimation error.
As expected, the optimum M increases with increasing V.
We can also observe that the average performance of MSEC,
compared to DPD, is more dependant on the M since the value
of M directly affects the quality of the covariance matrix in
(17) which is the input to SVD of MUSIC unlike DPD in
which the covariance matrix calculation in (7) is independent
of M. According to these findings, the value M = 25% is
selected for both MSEC and relative-DPD.

B. Overall Evaluation

In this section, we evaluate the best performing approaches
of MSEC-MUSIC (M = 25%), absolute (¢ = 6) and relative
(M = 25%) coherent DPD-MUSIC for N = {2,3,4,5} and
widely varying Ag.

As can be seen in Fig. 1, in all cases of N for all
methods the performance of DOA estimation improves as
A¢ decreases below 30°. Since the spatial resolution of Yj,,
depends on the maximum SH order L, below a certain A¢
multiple sources active in a TF bin are considered as a single
source spatially between the true sources and therefore that
bin is selected as a SS-bin. In such cases, the lower the
angular separation of sources is, the lower the estimation error
will be. For separation of A¢ > 30°, both DPD-MUSIC
methods in our experiments lose accuracy and robustness to [V
and A¢ unlike MSEC-MUSIC which shows relatively strong
robustness. As expected, relative DPD shows higher robustness
to N as it uses dynamic selection process unlike absolute
DPD with static selection. Overally MSEC-MUSIC, due to
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global consideration of SS-bins, shows stronger robustness to
source separation and number of sources as it varies from 2.4°
to 6.5° compared to DPD-MUSIC which is based on local
consideration of SS-bin and changes from 2.2° to 15° mean
estimation error.

V. CONCLUSIONS

A DOA estimation method has been proposed for multiple
active sources. The method exploits a variant of multi-source
clustering of speaker-dominant time frequency bins to make a
fundamental change to the computation of the spatial covari-
ance matrix used in the MUSIC algorithm. The effectiveness
of this approach has been tested for multiple simultaneously
active speech sources in a simulated acoustic environment
with 0.4s reverberation time, and using a spherical micro-
phone array. The simulation shows that our technique MSEC-
MUSIC significantly outperforms the state-of-the-art DPD-
MUSIC with less than 6.5° mean estimation error, 4° and
2.5° robustness to number of sources and source separation
respectively for up to 5 sources with widely varying source
separations in the presence of realistic reverberation and sensor
noise. As a conclusion, our work indicates that estimation of a
global covariance matrix per speaker, compared to clustering
of local signal spaces derived from local covariance matrices,
leads to a more accurate global signal space per speaker.
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