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Abstract—Detection of targets using low power embedded
devices has important applications in border security and
surveillance. In this paper, we build on recent algorithmic
advances in sensor fusion, and present the design and imple-
mentation of a novel, multi-mode embedded signal processing
system for detection of people and vehicles using acoustic
and seismic sensors. Here, by “multi-mode”, we mean that
the system has available a complementary set of configura-
tions that are optimized for different trade-offs. The multi-
mode capability delivered by the proposed system is useful to
supporting long lifetime (long term, energy-efficient “standby”
operation), while also supporting optimized accuracy during
critical time periods (e.g., when a potential threat is detected). In
our target detection system, we apply a strategically-configured
suite of single- and dual-modality signal processing techniques
together with dataflow-based design optimization for energy-
efficient, real-time implementation. Through experiments using
a Raspberry Pi platform, we demonstrate the capability of our
target detection system to provide efficient operational trade-
offs among detection accuracy, energy efficiency, and processing
speed.

I. INTRODUCTION

Sensor networks for detection of targets such as people
and vehicles are of great relevance in defense and security
applications. In such networks, use of non-image sensors,
such as acoustic and seismic sensors, are of interest in
part because of their power efficiency compared to image
sensors. Various studies have been focused on development
and enhancement of acoustic and seismic signal processing
algorithms for high target detection accuracy.

For large-scale deployment of such networks, it is critical
to provide methods for their cost- and energy-efficient real-
ization, while providing high detection accuracy and low false
alarm rate. In support of these objectives, a significant body of
research has focused on the development of novel algorithms
for fusion, target detection, and classification from acoustic
and seismic signals (e.g., see [1], [2], [3]). In this paper, we
develop design optimization methods that are complementary
to this body of prior algorithm-oriented work. In particular,
we focus on system design and implementation issues that
are important for delivering the accuracy offered by relevant
fusion/detection algorithms along with energy-efficient and
resource-constrained execution capability on low cost sensor
node platforms.

To balance objectives of low average energy consumption
(streamlined standby operation) and optimized accuracy dur-
ing times of critical operation (e.g., when potential threats are
actively being monitored), we develop a novel, multi-mode
system design that provides alternative configurations to

support optimized trade-offs for these standby and critical op-
eration scenarios. Transitions between these modes can then
be triggered based on specific application requirements — for
example, transitions may be manually-driven by personnel
operating a monitoring station or they may be triggered
automatically using some kind of finite state machine logic.

In this work, we apply a dataflow-based methodology
for model-based implementation and design optimization of
the proposed multi-mode target detection system. Dataflow
methods are widely used in many areas of signal processing
system design (e.g., see [4]). In addition to supporting design
optimization, our application of dataflow methods helps to
promote reliability and efficiency of the developed imple-
mentation, as well support the retargetability of the system
to other types of sensor node platforms. We provide extensive
experimental results to motivate the use of alternative modes
in our dataflow-based target detection system design, and to
quantify the useful range of operational trade-offs provided
by the different modes.

II. RELATED WORK

Various algorithms have been proposed that are relevant
to person-and-vehicle detection (PVD) using energy-efficient
sensing modalities, including acoustic and seismic modalities.
For example, Dibazar et al. develop neural networks that
operate on seismic signals from footsteps and vehicles [3].
Damarla and Kaplan develop a decision-level fusion archi-
tecture for tracking groups of people using acoustic and
seismic signal processing [2]. Ben Salem et al. present an
adaptive target detection system that employs mobile devices
as sensor node platforms, and applies different acoustic
signal processing techniques for different signal-to-noise ratio
conditions, and energy consumption constraints [5]. Our
work in this paper differs from these prior works in that
we simultaneously handle (1) multiple sensing modalities
(acoustic and seismic); (2) both decision and feature level
fusion for improved accuracy; and (3) design optimization for
energy- and resource-constrained embedded implementation.

In this work, we build on our recent algorithmic investi-
gation of PVD using acoustic and seismic signals [6]. In this
investigation, we introduced an adaptation to PVD of sensor
fusion based on Dempster-Shafer Theory (DST) [7], [8], and
we also introduced a PVD algorithm, called Accumulation of
Local Feature-level Fusion Scores (ALFFS). ALFFS extracts
cepstral features, and applies an accumulative, feature-level
fusion approach. Our work in this paper employs the algo-
rithms developed in [6] as a starting point, and addresses
system design and implementation challenges that are crit-
ical to practical deployment of the algorithms. The system
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design and implementation-oriented focus of this work is
significantly different from that of [6], which is focused on
algorithmic aspects.

III. SYSTEM DESIGN

The input to our PVD system consists of multi-modal
sensor streams that arrive from a pair of sensors — one
acoustic sensor and one seismic sensor. Here, we use the
term multi-modal to represent multiple sensing modalities,
while multi-mode refers to the incorporation of alternative
operational modes with complementary trade-offs. The PVD
system operates on fixed-length frames of signal samples. The
number of samples per frame is determined by two system
parameters — the frame duration tf , and sample rate Nr.

The output of our PVD system is a sequence (y1, y2, . . .)
of target classification results, where each yi ∈ {P, V,N}
provides the derived detection result for the ith frame. Here,
P , V , and N correspond, respectively, to detection of a per-
son, a vehicle, or noise (the absence of any person or vehicle),
respectively. This is referred to as a multi-class classification
system since the system must discriminate across more than
two classes.

Both the DST-based and ALFFS approaches employed
in our PVD system employ support vector machine (SVM)
subsystems as core building blocks for the classification
process. SVMs are widely used in machine learning applica-
tions due to their robustness and classification performance
(e.g., see [9]). In each mode of our PVD system, we apply
multiple, Binary SVM Classifiers (BSCs) along with voting
logic to perform the targeted multiclass classification task. In
particular, we employ BSCs that are configured to perform P
vs. N , P vs. V , and V vs. N classification. These BSCs are
embedded in different ways into different PVD architectures
that are associated with the alternative modes. These different
embeddings provide an efficient range of operational trade-
offs, which we will demonstrate quantitatively in Section IV.

Our PVD system involves four modes of operation, which
we refer to as the acoustic mode, seismic mode, DST fusion
mode, and ALFFS mode. These modes are denoted as µac ,
µsei , µdst , and µalf , respectively. The modes provide progres-
sively higher levels of accuracy, while the latter two modes —
which involve dual-modality processing — consume higher
levels of energy and require longer run-time. The first mode
µac provides lower accuracy compared to all of the other
modes, while providing no significant benefit, as evaluated
on our target platform, in terms of the run-time or energy
efficiency. Thus, µac is disabled in the final implementation.
However, the mode is useful to have available for exper-
imentation purposes, and for enhanced configurability. For
example, the accuracy of µac may improve significantly if the
design is (1) retargeted to a platform that employs a higher
quality acoustic sensor or (2) adapted to an application in
which acoustic signals provide better discrimination poten-
tial compared to seismic signals (e.g., speech detection or
recognition).

In Section III-A through Section III-C, we present
dataflow graph specifications for the different modes in our
PVD system. The presentation here is focused on highlighting
relevant aspects of the embedded software architecture. For

details of the underlying algorithms, we refer the reader
to [6].

Each dataflow graph, including all of its encapsulated ac-
tors (dataflow graph vertices) and connections (graph edges),
is implemented using the LIghtweight Dataflow Environment
(LIDE) [10]. LIDE is a software tool that facilitates design
and implementation of embedded signal processing systems.
More specifically, our dataflow graph implementations em-
ploy LIDE-C, which is the integration of LIDE with the C
programming language. We have used LIDE-C for design
and implementation of the entire PVD system, including the
dataflow graphs for the different modes.

Actors in LIDE-C, as in other dataflow tools, execute
in terms of discrete units of execution, which we refer to
as firings. As the enclosing signal processing application
operates on successive samples or frames of data, each
dataflow actor in general executes iteratively through a se-
quence of successive firings. The operation of an actor is
often explained in terms of the computation it performs in a
single firing.

A. Single-Modality Operation

Figure 1 illustrates the dataflow graph employed in our
design and implementation of the two single-modality modes,
µac and µsei . These two modes use exactly the same actors
and edges. The key difference in the dataflow graph con-
figurations between the two modes is that different sets of
parameters are employed by the SVMs within the SVM Bank
actor.
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Fig. 1. Dataflow graph for single-modality PVD.

The Acoustic/Seismic Sensor Input (“Sensor Input”) ac-
tor injects digitized samples that are produced by an ana-
log/digital (A/D) converter that is interfaced to the relevant
sensor device — that is, interfaced to the acoustic sensor in
µac and the seismic sensor in µsei . In our implementation of
this sensor input actor, we employ C-based Linux libraries
that are developed for GNU-Linux platforms, including
x86/64 Linux and ARM-based Linux platforms such as the
Odroid and Raspberry PI platforms [11].

The Feature Extraction actor in Figure 1 applies cepstral
analysis to extract features from the digitized samples arriving
from the sensor source. For FFT computation, we employ
a LIDE-C wrapper around an optimized module from the
FFTW library [12]. On each firing, the Feature Extraction
actor consumes Ns samples, corresponding to a single frame
of sensor data, and produces Nc cepstral coefficients, where
Nc is a parameter of the actor, and Ns can be derived as
the product of the system frame duration tf and sample
rate Nr. The generated cepstral coefficients are subsequently
employed (in the downstream portion of the dataflow graph)
as the features of the input frame.

The cepstral features extracted from the Feature Ex-
traction actor are sent as input to the SVM Bank actor,
as illustrated in Figure 1. The SVM Bank actor, like the
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Feature Extraction actor, is an important actor in all of the
different modes of our PVD system. The SVM Bank actor
applies three different BSCs, which we denote by βpv , βpn ,
βvn . These BSCs are trained, at design time (offline), to
discriminate respectively between P vs. V , P vs. N , and
V vs. N . Recall that P , V , and N , respectively represent the
decision classes “person”, “vehicle”, and “noise”. In a given
firing of the SVM Bank actor, each of the three encapsulated
BSCs produces a real-valued score φ. The sign (negative or
positive) of φ indicates the predicted decision class (between
the two candidate classes), and the absolute value of φ
provides an indicator of the strength or “confidence” of the
prediction. On each firing, the SVM Bank actor produces as
output three real-valued, scalar outputs, which correspond to
the scores generated by the three encapsulated BSCs.

The Threshold actor in the dataflow graph consumes a
block of real values x1, x2, . . . , xM , and simply applies a
threshold τ to each one to produce a binary output. In
all of our applications of the Threshold actor in the PVD
system, the block size M is equal to 3, and each input block
corresponds to scalar scores associated with P vs. V , P vs.
N , and V vs. N discrimination. The threshold τ , however, is
not identical in all PVD modes. In the case of Figure 1, we
apply τ = 0 for both modalities. The output of the Threshold
actor is in general a block z1, z2, . . . , zM of binary values,
where for each i, zi = 0 if xi < τ , and zi = 1 if xi ≥ τ . In
the case of µac and µsei , these binary values correspond to
prediction results for each of the BSCs employed within the
SVM Bank.

The Multiclass Decision actor in Figure 1 is used to
combine blocks of binary prediction results into a corre-
sponding stream of multiclass decision results. Again, we
use block size M = 3. The input block consists of a triplet
of binary decisions, (z1, z2, z3), corresponding to βpv , βpn ,
and βvn , respectively. For example, z1 = 0 if the BSC βpv

has generated a prediction of P for the most recent signal
frame, and z1 = 1 if βpv has predicted V . The Multiclass
Decision actor applies a simple voting rule to generate a
single classification result from within the set {P, V,N}. In
case of a tie (all three input predictions are different), the
actor produces N as the classification result.

B. DST-based Fusion Mode

Figure 2 shows the dataflow graph for the dual-modality
mode µdst . In this graph, the Acoustic Sensor Input and
Seismic Sensor Input actors can be viewed as multiple
concurrent instantiations of the single sensor input actor in
Figure 1. These actors inject digitized data acquired from
both sensing modalities for processing and fusion in the
downstream portion of the dataflow graph.
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Fig. 2. Dataflow graph for the dual-modality mode µdst .

The Feature Extraction actors in the µdst dataflow graph
represent multiple instantiations — one for each sensing

modality — of the actor with the same name in Figure 1. The
cepstral coefficients extracted by each of these two Feature
Extraction actors are processed by separate SVM Bank actors.
The SVM Bank actors in Figure 2 are identical to the
corresponding actor in Figure 1; however, they are configured
differently at design time. Each of the BSCs encapsulated
within the SVM Bank in the upper (acoustic) branch is trained
for the associated binary classification task based on acoustic
data, and similarly, the training for the lower SVM Bank
actor is based on seismic data. In other words, both trained
versions of the SVM Bank actor in Figure 1 are instantiated
concurrently in Figure 2.

The DST Fusion actor in Figure 2 is the only “new” actor
in this dual-modality dataflow graph compared to Figure 1.
This actor applies a dual-modality fusion algorithm based
on Dempster-Shafer Theory, as mentioned in Section II.
For complete details on this algorithm, we refer the reader
to [6]. In a given firing, the DST Fusion actor takes as input
two frames of cepstral coefficients a(1), a(2), . . . , a(Nc) and
s(1), s(2), . . . , s(Nc), which are extracted as features from
the corresponding acoustic and seismic input signal frames.
From the results of its underlying fusion algorithm, the
actor then produces (similar to the SVM Bank actor in
Figure 1) three real-valued, scalar outputs, which represent
binary classification scores for discrimination between P vs.
V , P vs. N , and V vs. N , respectively. In the case of the
DST Fusion actor, each output score σ is a non-negative real
number with σ < 1 corresponding to one decision class and
σ > 1 corresponding to the other.

The Threshold actor in Figure 2 applies block size M = 3
and threshold τ = 1 to produce, on each firing, a triple
of binary prediction results. This triple is then processed
by the Multiclass Decision actor to produce a single PVD
classification result from the set {P, V,N}.

C. ALFFS Mode

Figure 3 shows the dataflow graph for the second dual-
modality mode, which is µalf . As with the µdst subsystem,
input samples are injected into this graph using the Acoustic
Sensor Input and Seismic Sensor Input actors. Overlapping
windows of samples from each input frame are then pro-
cessed using the two instances of the Feature Extraction actor
shown in Figure 3.
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Fig. 3. Dataflow graph for dual-modality PVD using ALFFS.

In µalf , each Feature Extraction actor is configured to
process overlapping windows of input data through appro-
priate setting of two actor parameters, called the threshold
parameter and consumption parameter. These parameters,
denoted respectively by thr and cns , control the flow of
data from the first-in, first-out (FIFO) buffer that corresponds
to the input edge ein of the actor. The threshold parameter
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specifies the number of samples that must be present on
ein before the actor can be fired, and the cns parameter
specifies how many tokens are consumed (removed) from ein
on each firing. This results in a processing pattern whereby
successive firings of each Feature Extraction actor process
overlapping windows of data, where each window contains
thr samples, and adjacent windows contain (thr − cns)
samples of overlapping data.

This use of distinct threshold and consumption parameters
is closely related to a similar distinction that is part of the
computation graph model [13]. The parameters can be im-
plemented efficiently through a straightforward adaptation of
LIDE where the enable function (used to determine whether a
LIDE actor can be fired) is controlled by the threshold param-
eter and the invoke function (which executes an actor firing)
consumes samples based on the consumption parameter. This
type of threshold- and consumption-parameterized feature
extraction provides efficient sliding window operation.

In the Feature Extraction configurations used in Figure 1
and Figure 2, thr = cns , and the window size in the
enclosing dataflow graphs is effectively equal to the input
frame size (i.e., multi-window processing is not employed).
The µalf mode is the only PVD system mode that requires
thr 6= cns, due to the windowed behavior of the underlying
ALFFS algorithm [6].

In particular, in ALFFS, feature extraction is performed
on Nw overlapping windows of a given input frame. The
Nc cepstral coefficients extracted from each window are
processed by the SVM Bank actor, as shown in Figure 3.
The coefficients extracted from each pair of corresponding
windows associated with the two sensing modalities are con-
catenated by the Feature Concatenation actor before arriving
as input to the SVM Bank actor. SVM Bank then fires Nw

times, and processes a (2 × Nc)-element feature vector on
each firing. This results in a total of 3×Nw values that arrive
at the input of the ALFFS Score actor. These values represent
the collection of binary prediction triples (P vs. V , P vs. N ,
and V vs. N ) for all of the windows. Corresponding elements
of the triples are added in the ALFFS actor, and the resulting
sums are analyzed, as illustrated in Figure 3, to derive the
final multiclass classification result for the multi-modal input
frame. For further details on the algorithm that underlies the
ALFFS mode, we refer the reader to [6].

IV. EXPERIMENTS

In this section, we present an experimental evaluation of
the multi-mode PVD system design presented in Section III.
We compare the run-time and energy consumption perfor-
mance of the different system modes using the same input
data. For this purpose, pre-collected input frames (frames
of acoustic and seismic signals) are stored within flash
memory on the targeted embedded platform. The “sensor
input” actors in Figure 1, Figure 2 and Figure 3 are configured
in these experiments to read the pre-collected data from flash
memory and inject it into the associated dataflow graphs
for processing. The sensor input actors in practice obtain
the data directly from the sensors. However, the purpose in
these experiments is to demonstrate how the proposed meth-
ods provide optimized trade-offs for improving processing
capabilities at the network edge.

The pre-collected data used in these experiments is ob-
tained from datasets that were collected from acoustic and
seismic sensors on Spesutie Island at the Aberdeen Proving
Grounds in Maryland, USA. Further details about these
datasets can be found in [14]. We employed a dataset that
consists of 1000 data frames, where each frame contains 6
seconds of acoustic and seismic data. 500 of these frames
were used in our experiments for training, and the other 500
frames were used for testing.

The target platform that we used in our experiments is the
Raspberry Pi 3 Model B, which is equipped with 1GB RAM,
a 4x ARM Cortex A53 CPU, and a Broadcom VideoCore
IV GPU. The operating system used was Raspbian 4.4. The
device we used for measuring power consumption is the
Tektronix Keithley Series 2280 Precision Measurement DC
Power Supply.

The energy consumption of the sensors is not included in
the values reported in this section. This is because separate
energy sources may be used for the sensors, and our intent
is to focus in the paper on trade-offs between processing
efficiency (energy and speed) versus accuracy for alternative
signal processing techniques. However, the design methodol-
ogy applied in this paper can be readily adapted to develop
a multi-mode system whose modes are selected in a manner
that takes into account the energy efficiency of the sensors.
Although developing such adaptations may be useful, it is
beyond the scope of this work but may be addressed in the
future with large scale sensor networks.

Various parameter values employed in our experiments
are summarized in Table I.

TABLE I. PARAMETER VALUES USED IN OUR EXPERIMENTS.

Description symbol value units

Frame duration tf 6 seconds

Sample rate Nr 4096 Hz

Number of cepstral coefficients Nc 50

Number of windows (ALFFS) Nw 50

Window overlap ratio (ALFFS) wr 0.4

Table II shows the measured accuracy of the four different
modes in our PVD system. The accuracy is measured as
(zc/F ), where zc is the number of correct classifications, and
F is the number of frames of input data (i.e., the total number
of classification events). From Table II, we see significant
variation in accuracy among the modes, with a significant gap
from each lower accuracy mode to the next higher accuracy
mode. As expected, the dual-modality modes have higher
accuracy compared to the single-modality ones.

TABLE II. ACCURACY COMPARISON (%).

Acoustic Seismic DST Fusion ALFFS

Accuracy

(%)
67.94 76.55 81.56 98.40

Table III summarizes measurements of power consump-
tion P (Watts), run-time R (seconds per data frame), and
energy consumption E = R × P (Joules per data frame).
Here, a “data frame” corresponds to a single frame of acoustic
or seismic input data for the single-modality modes. For the
dual-modality modes, a data frame encapsulates an acoustic
input frame together with its corresponding seismic input
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frame. The reported power values are derived by measuring
the power consumption in the associated modes, and subtract-
ing from these measurements the baseline power consumption
(i.e., the power consumed when the processing platform is
idle). This gives an estimate of the power consumption that
is attributable to the processing requirements of each mode.

TABLE III. POWER CONSUMPTION, RUN-TIME, AND ENERGY

EFFICIENCY COMPARISON.

Current (A) Power (W) Run-time (sec)
Energy per

frame (J)

Acoustic 0.14359 0.71795 0.142834 0.102548

Seismic 0.14130 0.70650 0.147289 0.104060

DST Fusion 0.15652 0.78261 0.170359 0.133323

ALFFS 0.15065 0.75325 0.250434 0.188639

While the ALFFS mode provides superior accuracy, this
enhanced discrimination capability comes at the expense of
higher power consumption, and longer execution time. These
costs in turn combine to increase energy consumption, lead-
ing to faster battery drain. Conversely, the single-modality
modes are more energy efficient, but are not as accurate as the
modes that employ fusion techniques. This loss in accuracy
means that there will be a higher rate of missed events or
false event detections. The run-time, accuracy, and energy
consumption for DST Fusion provide an intermediate trade-
off between the single-modality modes and ALFFS.

These results demonstrate that each of the four modes
provides a distinct, Pareto-optimal (non-dominated) design
point among the four design points represented by the PVD
system modes. Given a multidimensional design evaluation
space involving N > 2 metrics, a design point p1 is said
to dominate another point p2 if p1 is better than or equal
to p2 in terms of all of the N relevant metrics, and p1 is
better than p2 in terms of at least one metric. For example,
from the data shown in Table II and Table III, the acoustic
mode (design point) is not dominated by any of the other
modes (e.g., because it is better than all other modes in terms
of energy consumption per processed input frame). On the
other hand, if accuracy and power consumption were the only
metrics considered in the design evaluation space, then the
acoustic mode would be dominated by the seismic mode.
Intuitively, a dominated mode is redundant or “expendable”
in the context of the associated design evaluation space.

Despite its status as a non-dominated mode, it can be
argued that for this application, the acoustic mode incurs an
excessive loss in accuracy in exchange for relatively small
improvements in run-time and energy consumption compared
to the seismic mode. However, the remaining three modes —
the seismic, DST fusion, and ALFFS modes — represent di-
verse operational alternatives that offer significantly different
trade-offs among the three design evaluation metrics E,R, P .
For example, during critical states of operation, such as when
a potential threat is detected, ALFFS may be used, while the
seismic mode may be used for standby operation, and the
DST fusion mode may be used during times of anticipated
transition between standby and critical states.

V. CONCLUSION

In this paper, we have introduced an optimized, multi-
mode embedded target detection system that employs acous-
tic and seismic sensors for detection of people and vehicles.

The system provides two complementary modes of operation
that include single-modality processing using seismic and
acoustic sensors, respectively. The system also provides two
dual-modality modes that incorporate sensor fusion, using
methods based on Dempster Shafer Theory (DST) and a
recently-introduced algorithm called Accumulation of Local
Feature-level Fusion Scores (ALFFS). Experimental results
demonstrate that the seismic, DST Fusion, and ALFFS modes
provide flexibility in dynamically reconfiguring system exe-
cution across a range of useful operational trade-offs. Ad-
ditionally, the acoustic mode is included within the system
to enhance adaptability to other target detection applications
and sensing devices that are more amenable to acoustic
signal processing. Useful directions for future work include
investigating trade-offs involving alternative windowing con-
figurations in ALFFS, and developing low power hardware
accelerators to further improve system trade-offs.
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