
Improved Reversible Data Hiding in Encrypted
Images Based on Reserving Room After Encryption

and Pixel Prediction
Ioan Catalin Dragoi, Henri-George Coanda and Dinu Coltuc

Electrical Engineering Dept.
Valahia University of Targoviste, Romania

Email: {catalin.dragoi, henri.coanda, dinu.coltuc}@valahia.ro

Abstract—This paper proposes a new vacating room after
encryption reversible data hiding scheme. Both joint and separate
methods are presented. The most interesting features of the
proposed scheme are the two staged embedding/decoding process
and the group parity based data embedding for the separate
method. Other new features are introduced as well. Compared
with the state-of-the-art reserving room after encryption schemes,
the proposed approach provides higher embedding bit-rates at
lower distortion. Experimental results are provided.

I. INTRODUCTION

Reversible data hiding (RDH) in encrypted images recently
appeared as a promising research domain. As for RDH into
clear images the correlation between image pixels is exploited
(see [1], [2], [3]), but the encryption makes the domain more
challenging.

Zhang introduced in [4] a RDH scheme for encrypted
images based on dividing the encrypted image into blocks and
embedding a bit in each block by flipping the 3 least significant
bit values of half the pixels from the block. At the decoding
stage, the correlation between the decrypted pixels of each
block is used to detect which pixels had their bits flipped. The
encrypted images were generated by an exclusive-or operation
with pseudo-random bits. Hong et al. later improved this
hiding scheme in [5] using better estimations and a side match
technique. Ma et al. proposed in [6] a hiding scheme based on
reserving room before encryption. As the name suggests, in
[6] the image owner processes the image before encryption
in order to create space for the data hider. This approach
was further refined by multiple other papers, most notably
[7]. Naturally, the embedding process is considerably more
efficient then the one in [5], but the additional operations
at encryption/decryption are inherently security risks and
therefore schemes that do not have such drawbacks (like [5])
are still relevant. [4], [5] and other similar approaches, most
notably [8] and [9], are now known as schemes based on
reserving room after encryption. For a recent review of RDH
in encrypted domain see [10].

This paper proposes a new vacating room after encryption
RDH scheme. The main improvements of the proposed scheme
are the use of a two staged embedding/decoding process, a
pixel prediction based on the median context value and a group
parity based embedding for the separate method. Compared

with the state-of-the-art schemes like [8], higher embedding
bit-rates can be obtained at lower distortion.

The outline of the paper is as follows. Both the joint and
the separate versions of the reversible data hiding scheme of
[8] are described in Section II. The proposed scheme, also
with a joint and a separate version, is introduced in Section
III. The experimental results are presented in Sections IV and
the conclusions are drawn in Section V.

II. RELATED WORK

The reversible data hiding scheme for encrypted images
introduced in [8] has two distinct versions: a joint method
(where the hidden data extraction and the image restoration
are both performed after the image was decrypted) and a
separate method (where the hidden data can be decoded from
the encrypted image, but the host image can only be restored
after decryption).

Let C be the encrypted version of image I . Each bit plane
of C, Ct, (1 ≤ t ≤ 8) is computed as:

Ct = It ⊕ rt (1)

where ⊕ is the exclusive-or operator and r is a standard
pseudorandom bitstream sequence generated by an encryption
key.

A. The joint method of [8]

This method embeds L bits in nL pixels of the encrypted
image, n ≥ 1. First nL pixels of C are selected based on a
data hiding key. Once an encrypted pixel C(i, j) is chosen,
the pixels that form its prediction context (Figure 1.b) cannot
be selected for data embedding. A data bit is embedded by
flipping the t bit of n selected pixels:

C ′t(i, j) =

{
∼Ct(i, j), if b = 1,
Ct(i, j), if b = 0.

(2)

where ∼ is the not operator and b ∈ {0, 1} is the hidden bit.
A watermarked version of I is obtained by decrypting each

bit plane of C ′ using the encryption key:

I ′t = C ′t ⊕ rt (3)

If the user has access to the data hiding key, the embedded
data can be extracted. The nL watermarked pixels are first

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2250

(a) (b) (c)

Fig. 1. The proposed pixel distribution (a), the prediction context used by
set B and the scheme of [8] (b), the prediction context used by set A (c).

selected using the hiding key. For each of those pixels, I ′′(i, j)
is generated by flipping I ′t(i, j). Then Î(i, j), the predicted
value of I(i, j) (a weighted average on the prediction context),
is used to determine b, the hidden bit inserted in each group
of n pixels:

b =

{
0, if

∑n
k=1

∣∣∣I′(ik, jk)− Î(ik, jk)
∣∣∣ ≤∑n

k=1

∣∣∣I′′(ik, jk)− Î(ik, jk)
∣∣∣

1, if
∑n

k=1

∣∣∣I′(ik, jk)− Î(ik, jk)
∣∣∣ >∑n

k=1

∣∣∣I′′(ik, jk)− Î(ik, jk)
∣∣∣

(4)

where |x| =

{
x, if x ≥ 0

−x, if x < 0
.

If b = 1, all n pixels in the current group are replaced with
their corresponding I ′′(i, j) value, otherwise the pixels remain
unchanged. Both n (the number of pixels in a group) and t
(the bit plane used for data hiding) have a direct influence on
the precision of equation (4). A larger value for n improves
the precision of (4), but reduces the available space for the
hidden data. Similarly, a larger value for t also improves the
precision of (4), but the watermarking distortion increases.

B. The separate method of [8]

This method embeds L additional bits in L pixels (as
opposed to nL pixels) selected based on the hiding key. The
secret bit b is inserted directly in the host pixel C(i, j) by
substituting its t bit:

C ′t(i, j) = b (5)

A user with access to the hiding key can decode the hidden
data by reading the t bits of the L selected pixels. After (3)
is used to decrypt I ′(i, j), the closest value to Î(i, j) between
I ′(i, j) and I ′′(i, j) is selected as the original value of I(i, j).

Note that all separate approaches can correctly decode the
hidden data, but the restoring step remains affected by the
possibility of errors. Also note that this approach needs a
larger value for t in order to compensate for the embedding
in a single pixel instead of a group of n. In [8] the author
recommends t ≥ 7 and adds a filtering stage after decryption
in order to remove the distortions introduced by the watermark.
This additional filtering step draws attention to the existence
of the hidden data in the encrypted image and represents a
serious security risk. The proposed scheme in Section III-B
does not have this drawback.

III. PROPOSED SCHEME

Similarly to [8], the proposed scheme has two distinct
versions: a joint method (watermark decoding and image
restoration on the decrypted image) and a separate method

(watermark decoding on the encrypted image, restoration on
the decrypted image).

The encrypted image (generated with [1]) is split by both
proposed methods into three distinct sets. These sets are
presented in Figure 1.a. Only sets A and B (a total of 2/3
of the image) are used for data hiding, set U is not modified
by the embedding algorithm. Note that [8] can embed data in
at most 1/2 of the image (the other half is used for prediction).

The data hiding key is used to determine the order in which
the pixels in set A and set B are processed. Set A is the
first set to be embedded with the hidden data, the pixels in
B are considered as possible hosts only after the capacity
offered by A is completely exhausted. The pixels in each set
are processed as groups of n pixels and a bit of data will be
inserted in each group by modifying their t bit value.

A 32 bit identifier (used to distinguish between watermarked
and non-watermarked images) together with the value of L
(also 32 bits) are appended as a prefix to the hidden data.
These 64 bits are the first to be embedded and extracted. Note
that this approach assumes that the data hider uses fixed values
for n, N and K based on t. A flexible approach is also possible
by using the fixed values to insert the identifier, L, n, N , K
and then switching to the indicated values for the remaining
host pixels.

A. Proposed joint method

The proposed joint method uses error-correcting codes on
the hidden data in order to reduce the number of decoding
errors (at the cost of embedding capacity). More precisely
Bose-Chaudhuri-Hocquenghem (BCH) codes [11] are used.
The (N,K) BCH code adds to each K bits an additional
N − K bits (forming a group of N bits) in order to correct
up to e errors. If in a group of N bits the number of errors
exceeds e, the BCH decoding is compromised. After the BCH
coding, (64 + L) · n ·N/K host pixels are selected from sets
A and B. Equation (2) is used to embed a data bit into each
group of n pixels.

After decryption, a user with the hiding key can extract the
hidden data by determining the order in which the pixels were
embedded and reforming the n pixel groups. Set A is decoded
and restored first. For each pixel in A, the predicted value
I ′(i, j) is computed as the median on its prediction context
(Figure 1.c):

Î(i, j) =

⌊
p(2) + p(3)

2
+

1

2

⌋
(6)

where bxc represents the greatest integer less than or equal
to x and p(1) ≤ p(2) ≤ p(3) ≤ p(4) are the sorted graylevel
values of the pixels that form the prediction context. Note that
all context pixels for set A belong to set U . Î(i, j) is then used
in equation (4) to determine the hidden data bit in the current
group.

The value of t is set to 6 and the first 64 · N/K bits are
extracted. The BCH decoder is used to correct any possible
decoding errors and if the watermark identifier is found, the
algorithm proceeds to extract data from L · n · N/K pixels.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2251

Otherwise t is decremented by 1 and the process is repeated.
If the identifier was not found for t = 3, then the image
did not contain hidden data. After the hidden bits in set A
are extracted, the errors are corrected and the host pixels are
restored based on the corrected bit values. After all the pixels
in set A are restored, the additional bits introduced by the
error correction code are removed.

The entire decoding process is repeated for set B, using
the prediction context from Figure 1.b, consisting of original
pixels from set U and restored pixels from set A.

B. Proposed separate method

The proposed separate method inserts L bits of data in
n(64 + L) pixels. As opposed to [8], both n and t are used
to minimize the image restoration errors, at the same time
allowing for a smaller value for t. As an additional requirement
for this proposed approach, n must be an odd number. Also
note that the above mentioned error correction codes cannot
be used for this method, because the watermark extraction and
the image recovery are done independently.

Instead of substituting the t bit of an encrypted pixel C(i, j)
with a hidden bit of data, the pixels are processed in groups
of n. For each group, {C1, C2, ..., Cn}, a parity value is
computed for the t bit plane:

s = C1
t ⊕ C2

t ⊕ ...⊕ Cn
t (7)

Flipping the t bit values of all the pixels in the group will
always flip the value of s if n is an odd number. This allows
us to substitute the value of s with the hidden bit b by flipping
the t plane bits of n pixels:

C ′t(i, j) =

{
∼Ct(i, j), if s 6= b,
Ct(i, j), if s = b.

(8)

The data extraction stage is similar to the one in Section
III-A: t is set to 6 and the first 64 bits are extracted from
the parity values s of the first 64 · n pixels ordered based on
the hiding key. If the 32 bit watermark identifier is found, the
algorithm proceeds to extract the remaining L bits. Otherwise
t is decremented by 1 and the process is repeated until the
identifier is found or no watermark is detected.

Because the pixels are processed as a group, they can be
restored after the decryption stage with the help of equation
(4). Note that in (4) b is no longer a hidden bit and is only
used as an indicator to choose between I ′(i, j) and I ′′(i, j).

IV. EXPERIMENTAL RESULTS

In this section, experimental results for the proposed RDH
scheme for encrypted images are presented. Two sets of
images are considered: eight classic graylevel 512 × 512
images extensively used in reversible watermarking (Lena,
Boat, Tiffany, Elaine, Lake, Mandrill, Jetplane and Barbara)
and the graylevel 768× 512 versions of the 24 images of the
Kodak set. The test images are presented in Figure 2. All test
images are encrypted with (1) by using randomly generated
encryption keys.

Fig. 2. The eight classic test images (first two rows) and the Kodak set.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

20

25

30

35

40

45

50

P
S

N
R

 [
d

B
]

Capacity [bits]

Classic set

Proposed scheme (error rate < 1%)

Proposed scheme (error rate < 0.1%)

Proposed scheme (error rate = 0%)

Wu et al. (error rate < 1%)

Wu et al. (error rate < 0.1%)

Wu et al. (error rate = 0%)

0 1 2 3 4 5 6 7 8

x 10
4

20

25

30

35

40

45

50

P
S

N
R

 [
d

B
]

Capacity [bits]

Kodak set

Proposed scheme (error rate < 1%)

Proposed scheme (error rate < 0.1%)

Proposed scheme (error rate = 0%)

Wu et al. (error rate < 1%)

Wu et al. (error rate < 0.1%)

Wu et al. (error rate = 0%)

Fig. 3. Average capacity/PSNR results for three distinct error rates.

Three primary factors are considered in evaluating the
performance of a data hiding scheme based on reserving room
after encryption: the embedding capacity, the error rate of the
decoded bits and the distortions introduced by watermarking.
The maximum capacity for the proposed joint method and
[8] are presented in Table I (classic set) and Table II (Kodak
set). Note that the bit plane t has no direct influence over
the embedding capacity, but t does significantly influence the
error rate and the watermarking distortions. The average error
rate of the decoded bits on the entire test set are presented in
Table III. As it can be seen from the three tables, the proposed
scheme with no error correction offers a significant increase
in capacity over [8], while maintaining similar error rates. Of
course, the BCH codes can be used to reduce the error rate at
the cost of capacity. This allows the data hider to embed data
using a smaller value for t while maintaining the target error
rate that one desires, which in turn will reduce the embedding
distortions.

The embedding distortions are evaluated based on the
peak signal-to-noise ratio (PSNR) between the original image
and the watermarked decrypted version. Figure 3 shows the
average capacity/PSNR results for the proposed scheme and
the joint method of [8] for three distinct error rates on the two
test sets. Note that both the joint and the separate proposed
methods offer the same capacity/PSNR results, the separate

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2252

TABLE I
MAXIMUM CAPACITY ON THE CLASSIC SET OBTAINED BY EMBEDDING ONE BIT OF DATA IN n PIXELS [BITS].

n Wu et Proposed scheme
al. [8] no coding BCH (7,4) BCH (15,7) BCH (15,5) BCH (31,21) BCH (31,16) BCH (31,11) BCH (31,6)

5 26010 38715 21988 17907 12705 26118 19828 13538 7248
9 14450 21375 12084 9808 6920 14379 10884 7389 3894
13 10003 14704 8272 6693 4695 9843 7428 5013 2598
17 7650 11175 6252 5055 3525 7449 5604 3759 1914
22 6192 8988 5004 4026 2790 5958 4468 2978 1488
25 5202 7503 4156 3333 2295 4950 3700 2450 1200
29 4484 6426 3540 2829 1935 4236 3156 2076 996
33 3940 5610 3072 2451 1665 3690 2740 1790 840
37 3514 4971 2712 2157 1455 3249 2404 1559 714
41 3171 4456 2416 1912 1280 2913 2148 1383 618
45 2890 4035 2172 1716 1140 2619 1924 1229 534
49 2827 3940 2116 1674 1110 2556 1876 1196 516
53 2453 3379 1800 1408 920 2178 1588 998 408
57 2281 3121 1648 1296 840 1989 1444 899 354
61 2131 2896 1524 1191 765 1842 1332 822 312

TABLE II
MAXIMUM CAPACITY ON THE KODAK SET OBTAINED BY EMBEDDING ONE BIT OF DATA IN n PIXELS [BITS].

n Wu et Proposed scheme
al. [8] no coding BCH (7,4) BCH (15,7) BCH (15,5) BCH (31,21) BCH (31,16) BCH (31,11) BCH (31,6)

5 39066 58299 33180 27042 19230 39390 29940 20490 11040
9 21703 32254 18300 14883 10545 21750 16500 11250 6000
13 15025 22237 12576 10207 7205 14946 11316 7686 4056
17 11490 16935 9544 7743 5445 11355 8580 5805 3030
22 9301 13651 7668 6210 4350 9150 6900 4650 2400
25 7813 11419 6396 5160 3600 7638 5748 3858 1968
29 6735 9802 5472 4411 3065 6525 4900 3275 1650
33 5919 8578 4768 3837 2655 5685 4260 2835 1410
37 5279 7618 4224 3382 2330 5055 3780 2505 1230
41 4764 6846 3780 3025 2075 4509 3364 2219 1074
45 4340 6210 3420 2731 1865 4110 3060 2010 960
49 4246 6069 3336 2668 1820 3984 2964 1944 924
53 3685 5227 2856 2269 1535 3417 2532 1647 762
57 3426 4839 2632 2094 1410 3165 2340 1515 690
61 3202 4503 2440 1933 1295 2934 2164 1394 624

method of [8] obtains a PSNR of around 32 dB, but without
the filtering stage the PSNR is consistently bellow 20 dB. As
can be seen from Figure 3 the proposed scheme outperforms
[8] on the tested error rates. For an error rate smaller than 1%,
the proposed scheme offers a capacity of 20000 bits on the
classic set and 30000 bits on the Kodak set, while maintaining
a PSNR of around 30 dB. The maximum capacity can be
further increased to 48000 bits and 75900 bits, respectively,
but at the cost of introducing visible watermarking distortion.
On the tested sets, the proposed scheme also inserts around
4000 bits at a PSNR of 30 dB without any decoding errors.

V. CONCLUSION

An original reserving room after encryption RDH scheme
has been proposed. Both joint and separate RDH versions
are investigated. The most interesting features are the use a
two staged embedding and the group parity approach for the
separate method. The experimental results obtained so far are
very promissing.

ACKNOWLEDGMENT

This work was supported by UEFISCDI Romania, PNIII-
P4-IDPCE-2016-0339 and PN-II-PTPCCA-2013-4-1762
Grants.

REFERENCES

[1] V. Sachnev, H. J. Kim, J. Nam, S. Suresh and Y. Q. Shi, ”Reversible
Watermarking Algorithm Using Sorting and Prediction”, IEEE Trans.
Circuits Syst. Video Technol., vol. 19, pp. 989–999, 2009.

[2] I.-C Dragoi and D. Coltuc, ”Local-Prediction-Based Difference Expan-
sion Reversible Watermarking”, IEEE Trans. on Image Processing, vol.
23, no. 4, pp. 1779–1790, 2014.

[3] X. Li, W. Zhang, X. Gui, and B. Yang, Efficient reversible data hiding
based on multiple histograms modification, IEEE Trans. Inf. Forensics
Security, vol. 10, no. 9, pp. 20162027, 2015.

[4] X. Zhang, ”Reversible data hiding in encrypted images”, IEEE Signal
Process. Lett., vol. 18, pp. 255–258, 2011.

[5] W. Hong, T. Chen, and H.Wu, ”An improved reversible data hiding in
encrypted images using side match”, IEEE Signal Process. Lett., vol.
19, pp. 199–202, 2012.

[6] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, ”Reversible Data Hiding
in Encrypted Images by Reserving Room Before Encryption”, IEEE
Trans. Inf. Forensics Security, vol. 8, pp. 553–568, 2013.

[7] X. Cao, L. Du, X. Wei, D. Meng, and X. Guo, ”High capacity reversible
data hiding in encrypted images by patch-level sparse representation”,
IEEE Trans. Cybernetics, vol. 46, pp. 1132–1143, 2016.

[8] X. Wu and W. Sun, ”High-capacity reversible data hiding in encrypted
images by prediction error”, Signal Processing, pp. 387–400, 2014.

[9] Y.-S. Kim, K. Kang and D.-W. Lim, ”New Reversible Data Hiding
Scheme for Encrypted Images using Lattices”, Appl. Math., vol. 9, pp.
2627–2636, 2015.

[10] Y.-Q. Shi, X. Li, X. Zhang, H.-T. Wu and B. Ma., ”Reversible data
hiding: advances in the past two decades”, IEEE Access, vol. 4, pp.
3210-3237, 2016.

[11] R.C. Bose and D.K. Ray-Chaudhuri, ”On A Class of Error Correcting
Binary Group Codes”, Information and Control, vol. 3, pp. 68–79, 1960.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2253

TABLE III
AVERAGE ERROR RATE OF THE DECODED BITS INSERTED IN THE t BIT PLANE (ALL TEST IMAGES) [%].

t n Wu et Proposed scheme
al. [8] no coding BCH (7,4) BCH (15,7) BCH (15,5) BCH (31,21) BCH (31,16) BCH (31,11) BCH (31,6)

3 5 19.746 18.968 31.842 36.185 40.6 29.099 34.377 41.244 52.729
9 11.985 11.459 16.978 18.463 18.886 16.415 18.327 19.542 22.615
13 8.274 7.9947 11 11.614 11.336 10.745 11.519 11.369 12.82
17 6.1128 5.9338 7.7662 8.0261 7.5812 7.6798 8.0222 7.7532 8.4848
21 4.7622 4.6299 5.8053 5.8132 5.5543 5.8583 5.8776 5.6179 5.9998
25 3.8158 3.7848 4.5309 4.5692 4.3503 4.5912 4.5648 4.6571 4.8608
29 3.0802 3.1252 3.6236 3.6757 3.1752 3.7081 3.6739 3.5205 3.4662
33 2.6513 2.5868 3.0113 3.0248 2.7547 3.0085 3.1645 2.7962 2.9261
37 2.2726 2.2331 2.5998 2.6478 2.2517 2.5756 2.7172 2.5252 1.9699
41 1.8339 1.9536 2.0629 2.2633 1.8871 2.1796 2.3898 1.9431 1.5465
45 1.6667 1.6931 1.8604 2.0041 1.4553 1.9262 1.8741 1.7779 1.0118
49 1.4574 1.5214 1.6369 1.6669 1.366 1.7777 1.6779 1.3614 0.96461
53 1.2868 1.3277 1.33 1.4738 1.1296 1.5514 1.4956 1.2048 0.78375
57 1.096 1.2235 1.3044 1.2451 0.82625 1.3981 1.3646 0.9286 0.57749
61 1.05 1.102 1.1386 1.0898 0.75231 1.3346 1.313 0.88308 0.75053

4 5 9.6593 8.9878 12.018 12.512 11.569 12.305 12.638 11.916 11.868
9 4.1017 3.7507 4.2354 4.0948 3.4751 4.3145 4.1266 3.5996 3.1437
13 2.2457 2.061 2.0968 1.9763 1.39 2.1942 2.1679 1.6225 0.89574
17 1.4154 1.3097 1.253 1.1426 0.68459 1.3141 1.2017 0.67198 0.23177
21 0.93534 0.89304 0.77812 0.62806 0.29321 0.85013 0.68942 0.26224 0.066445
25 0.65259 0.62871 0.45008 0.35132 0.17922 0.60081 0.38438 0.13795 0.025814
29 0.45159 0.50631 0.33073 0.21528 0.070264 0.36465 0.26147 0.074337 0
33 0.3327 0.35953 0.18112 0.14529 0.063346 0.23246 0.10939 0 0
37 0.23919 0.28058 0.17031 0.073216 0.016667 0.14037 0.059073 0.034611 0
41 0.18571 0.22617 0.094373 0.035298 0 0.071878 0.046908 0 0
45 0.14829 0.17726 0.053108 0.016777 0 0.054368 0.02068 0.0091285 0
49 0.10681 0.13853 0.034085 0.013515 0 0.053327 0 0 0
53 0.086596 0.11181 0.034575 0 0 0.053284 0 0 0
57 0.044823 0.10244 0.026493 0 0 0.031896 0 0 0
61 0.058604 0.064371 0.0037681 0.012892 0 0 0.009273 0 0

5 5 3.479 3.104 2.7369 2.4532 1.6252 3.0538 2.6343 1.6962 0.89949
9 0.83273 0.77156 0.42941 0.31203 0.14618 0.54429 0.35215 0.077159 0.011062
13 0.29571 0.29965 0.12971 0.065236 0.018923 0.12905 0.04358 0.0074788 0
17 0.12152 0.13717 0.049519 0.0030366 0 0.03002 0.0048275 0 0
21 0.056349 0.06998 0.011076 0.0014352 0 0.0032511 0 0 0
25 0.023821 0.036386 0.0056205 0 0 0.0027505 0 0 0
29 0.013226 0.020706 0 0 0 0 0 0 0
33 0.0040977 0.0099789 0 0 0 0 0 0 0
37 0.00057604 0.0050218 0 0 0 0 0 0 0
41 0.00096124 0.0058149 0 0 0 0 0 0 0
45 0.0017615 0.00098301 0 0 0 0 0 0 0
49 0.000768 0.00053851 0 0 0 0 0 0 0
53 0 0.0009058 0 0 0 0 0 0 0
57 0 0.002249 0 0 0 0 0 0 0
61 0 0.00068202 0 0 0 0 0 0 0

6 5 0.78397 0.68696 0.29609 0.17812 0.051234 0.32722 0.16552 0.037294 0.012159
9 0.075746 0.081664 0.0094983 0.0034543 0.0027973 0.0088271 0.0011773 0 0
13 0.010181 0.017533 0.00068691 0 0 0 0 0 0
17 0.0030748 0.0029545 0 0 0 0 0 0 0
21 0.00080061 0.0013145 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0
61 0 0 0 0 0 0 0 0 0

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2254

