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Abstract—In linear/nonlinear dynamical systems, there are
many situations where model parameters cannot be obtained
a priori or vary with time. As a consequence, the estimation
algorithms that are based on the exact knowledge of these model
parameters cannot be accurate in this context. In this work,
a kernel density-based particle filter is investigated to jointly
estimate the states and unknown time-varying parameters of a
dynamical system described by nonlinear state and measurement
equations. The approach combines an auxiliary particle filter
with the kernel smoothing method so as to obtain a stationary
kernel density for the unknown parameters. The performance
of the proposed approach is investigated for positioning using
measurements from a global navigation satellite system that are
possibly contaminated by multipath interferences.

I. INTRODUCTION

For state estimation problems in linear/nonlinear dynam-

ical systems, the state and measurement models described

in state-space forms need to be known, i.e., the parameters

of these models have to be exactly specified a priori [1].

However, there are situations in which the values of these

model parameters cannot be obtained a priori or vary with

time. As a consequence, the estimation algorithms, which are

based on the exact knowledge of the model parameters, can

be no longer accurate in this context. Thus the joint state

and parameter estimation (i.e., state estimation in the presence

of model uncertainty) for linear/nonlinear dynamical systems

is a challenging problem in many practical areas, such as

target tracking [2], satellite positioning [3] and communication

systems [4].

There are three main classes of joint state and param-

eter estimators for a dynamical system. The first class of

methods consists of augmenting the state vector by including

the unknown model parameters. Then the parameters can

be estimated by using estimation algorithms based on the

frame of the Kalman filter, such as the ensemble Kalman

filter [5]. In the second class of methods, the problem of

joint state and parameter estimation is considered as a spe-

cial case of maximum-likelihood estimation with incomplete

data. The estimation problem is then solved in the frame of

the expectation-maximization (EM) algorithm, i.e., the state

estimation is performed by using the model parameters in the

expectation step and then the model parameters are updated

using the estimated state and the corresponding measurements

in the maximization step. These two expectation and maxi-

mization steps are generally implemented until a convergence

condition is satisfied [6]. A third idea is to represent the joint

posterior distribution of the state and parameters by using a

set of weighted random samples (also known as particles)

generated according to an on-line Bayesian approach which

is based on sequential Monte Carlo (SMC) techniques [7].

When a new observation becomes available, the particles are

updated in order to approximate the joint posterior distribution

sequentially. When the unknown parameter vector is static in

an on-line Bayesian approach, successive time propagations

can lead to particle degeneracy. This problem can be solved by

introducing diversity in the set of particles by adding artificial

random noise to the particles, i.e., by approximating the static

parameters by some slowly changing time-varying ones [8].

The alternative solution, also known as particle learning, is to

sample new parameter values at each iteration by constructing

sufficient statistics associated with unknown parameters [9].

Regarding applications with time-varying unknown parame-

ters, it is interesting to mention a recent on-line Bayesian

approach exploiting a changepoint model for the unknown

parameters [10].

This paper considers the case where the unknown parame-

ters in the measurement model is time-varying and is assigned

a non-informative prior distribution. A kernel density-based

particle filter resulting from a kernel smoothing method em-

bedded into an auxiliary particle filter is investigated to jointly

estimate the states and unknown time-varying parameters of a

nonlinear dynamical system. The performance of the proposed

approach is evaluated by using measurements associated with

a global navigation satellite system (GNSS) possibly corrupted

by multipath (MP) interferences.

The rest of this paper is organized as follows. Section

II introduces a Bayesian formulation of the joint state and
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parameter estimation problem. Section III describes the auxil-

iary particle filter considered in this paper for handling time-

varying parameters. A kernel density smoother is presented

in Section IV and the resulting kernel density-based particle

filter is investigated in Section V. In Section VI, the proposed

approach is used to solve a GNSS-based positioning problem

in the presence of MP interferences. Conclusions are finally

reported in Section VII.

II. PROBLEM FORMULATION

The discrete-time state model which describes the propaga-

tion of the state vector xk in a nonlinear dynamical system

can be formulated as

xk = f (xk−1,uk−1) (1)

where k = 1, ...,K denotes the kth sampling time instant,

uk is an independent and identically distributed (i.i.d.) sys-

tem noise process whose probability density function (pdf)

is assumed to be known and possibly non-Gaussian. The

nonlinear measurement model including an unknown time-

varying parameter vector θk can be defined as

zk = h (xk, θk,vk) (2)

where zk is a measurement vector at time instant k and vk

is an i.i.d. non-Gaussian measurement noise process. In this

work, we assume that the function f (·) is known, whereas the

structure of the function h (·) is available and its uncertainty

can be expressed as an unknown time-varying parameter vector

θk having a non-informative prior distribution p (θ), i.e., some

parameters in h (·) randomly change over a finite interval

at each time instant. Accordingly, the general state-space

model in (1) and (2) can be described by using the following

conditional pdfs

xk ∼ p (xk|xk−1) (3a)

zk ∼ p (zk|xk, θk) (3b)

where the state xk is defined as a first-order Markov pro-

cess, i.e., its conditional pdf given the past states x0:k−1 =
{x0, ...,xk−1} only depends on xk−1 through the transition

pdf p (xk|xk−1), the conditional pdf of zk given the states

x0:k and the past measurements z1:k−1 = {z1, ..., zk−1}
only depends on the state xk and the unknown parameter

vector θk through the measurement pdf p (zk|xk, θk). The

problem addressed in this paper is to evaluate the posterior

pdf p (xk, θk|z1:k) when the unknown time-varying parameter

vector θ in the measurement model has a non-informative prior

distribution. According to the Bayesian estimation principle,

the posterior pdf p (xk, θk|z1:k) can be recursively updated as

follows

p (xk, θk|z1:k) ∝ p (zk|xk, θk) p (xk, θk|z1:k−1)

= p (zk|xk, θk) p (xk|z1:k−1) p (θk)
(4)

where

p (xk|z1:k−1) =

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1. (5)

Note that (5) represents a prediction step resulting in the prior

pdf of the state at time k. In most practical applications,

it is difficult to obtain an analytic solution of the posterior

pdf in (4), In these applications, it is quite classical to

consider particle filter approximating the posterior distribution

of interest by using a set of weighted particles leading to

p (xk, θk|z1:k) ≈
Ns∑
i=1

ωi
kδ

(
(xk, θk)−

(
xi
k, θ

i
k

))
(6)

where Ns is the number of particles, δ (·) is the Dirac delta

function,
(
xi
k, θ

i
k

)
is the ith particle and ωi

k is an appropriate

weight at time k.

III. AUXILIARY PARTICLE FILTER INCLUDING

TIME-VARYING PARAMETERS

The choice of the importance distribution in SMC tech-

niques directly impacts the estimation performance. In the

general case, it is difficult to determine the optimal importance

distribution, which requires the ability to evaluate the integral

of the current state [11]. By considering the current mea-

surement zk before the particles are propagated, the auxiliary

particle filter (APF) proposed in [12] generates particles from

the sample at time k − 1 that are most likely to be close

to the true state at time k. According to Bayes theorem, the

posterior pdf p (xk, θk, i|z1:k) depending on the state xk, the

unknown parameter vector θk and the auxiliary variables i can

be derived as

p (xk, θk, i|z1:k) ∝ p (zk|xk, θk) p
(
xk|xi

k−1

)
p (θk)ω

i
k−1

(7)

where i = 1, ..., Ns is the index of the particle at time k − 1.

Accordingly, the importance distribution is defined as follows

q (xk, θk, i|z1:k) ∝ p
(
zk|μi

k, θk

)
p
(
xk|xi

k−1

)
p (θk)ω

i
k−1

(8)

where μi
k characterizes xk given xi

k−1
and is usually spec-

ified as the expectation, i.e., μi
k = E

[
xk|xi

k−1

]
. The pos-

terior pdf p (xk, θk|z1:k) can be obtained by marginalizing

p (xk, θk, i|z1:k) with respect to the auxiliary variable. Thus

the sampling weight at time k which is proportional to the

ratio of the right-hand side of (7) and (8) is

ωk ∝ p (zk|xk, θk)

p
(
zk|μi

k, θk

) . (9)

IV. A KERNEL DENSITY SMOOTHER

As mentioned above, the prior distribution p (θ) of the

unknown time-varying parameter vector θ is assumed to be

non-informative [13], i.e., it carries no information about this

parameter vector. A kernel smoothing method was proposed

in [8] in order to approximate the prior distribution of θ by

using a mixture of multivariate Gaussian distributions. Using

the results of [8], the distribution of the unknown parameter

vector θ at time k can be represented as follows

p (θk) ≈
Ns∑
i=1

ωi
kN

(
θ|mi

k, h
2Vk

)
(10)
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where N (·) represents a Gaussian pdf with mean mi
k and

variance h2Vk, h is the kernel smoothing parameter. More

precisely, we propose to define the mean value mi
k and

covariance matrix Vk as in [14]

mi
k = aθi

k + (1− a) θ̄k (11)

Vk =

Ns∑
i=1

ωi
k

(
θi
k − θ̄k

) (
θi
k − θ̄k

)T
(12)

where θ̄k =
∑Ns

i=1
ωi
kθ

i
k, a =

√
1− h2 is the so-called shrink-

age parameter of the kernel mean, which pushes particles θi

towards their overall mean θ̄.

V. KERNEL DENSITY-BASED PARTICLE FILTER

The proposed approach, which is referred as to kernel

density-based particle filter, can be obtained by embedding

the kernel density approximation into the frame of the APF,

where the kernel smoothing approximation is computed itera-

tively until a termination condition is satisfied. The proposed

approach mainly consists of three steps that are summarized

in Algorithm 1. In the initialization step, the auxiliary particles

of the state and the initial samples of the parameters are

generated from their corresponding prior distributions, i.e.,

μi
k ∼ p

(
xk|xi

k−1

)
and θi

k (0) ∼ p (·) defined in (10) with

i = 1, ..., Ns. In the iteration step, the parameter samples

are iteratively updated by using the current measurement and

auxiliary particles of the state. The basic idea behind these

iterations is to eliminate parameter samples with small weights

and to concentrate on samples with large weights by using the

resampling procedure of the APF. Thus parameter samples

will converge around a single point after a few iterations at

each time instant, i.e., θ̄k. Moreover, the covariance matrix

Vk in the smooth kernel density will converge to stationary

values since parameter samples associated with high weights

have been statistically selected many times. In the propagation

step, the state particles can be propagated by using the APF

including parameter samples.

VI. EXPERIMENTAL RESULTS

A. Simulation Scenario

We have applied the kernel density-based particle filter to

a GNSS-based vehicle positioning problem in the presence of

MP interferences. In this application, the discrete-time state

model describing the propagation of the vehicle state can be

formulated as

xk = Φk|k−1xk−1 + ek−1 (13)

with

xk = (xk, ẋk, yk, ẏk, zk, żk, bk, dk)
T

where k = 1, ...,K denotes the kth time instant, xk is the

state vector containing the vehicle position (xk, yk, zk) and

velocity (ẋk, ẏk, żk) in the earth-centered earth-fixed (ECEF)

frame (Cartesian coordinates), and the GNSS receiver clock

offset bk and drift dk, ek = (ex, ey, ez, eb, ed)
T

is a zero mean

Algorithm 1: Kernel Density-Based Particle Filter.

Step 1: Initialization.

1: Calculate μi
k
∼ p

(
xk |x

i
k−1

)
and sample parameter particles

θi
k
(0) ∼ p (·) where i = 1, ...,Ns

Step 2: Iteration.

2: FOR r = 1, 2, ... do

3: Calculate weights ωi
k
(r) = p

(
zk |μ

i
k
, θi

k
(r)

)
4: FOR j = 1, ...,Ns do

5: Resample parameter samples with indices ij (r) from

probabilities
{
ωi
k
(r)

}Ns

i=1

6: END FOR

7: FOR j = 1, ...,Ns do

8: Set parameters θ
j

k
(r) = θ

ij(r)
k

9: Update parameter samples from the smooth kernel density

θ
j

k
(r + 1) ∼ N

(
θ|mj

k
(r) , h2Vk (r)

)

where m
j

k
and Vk are computed according to (11) and (12)

END FOR

10: If
|θ̄k(r+1)−θ̄k(r)|

|θ̄k(r+1)|
< δ or r ≥ rmax where 0 < δ � 1,

then the iteration terminates, else set r = r + 1

11: END FOR

Step 3: Propagation.

12: FOR i = 1, ...,Ns do

13: Regenerate parameter samples according to probability density

function θi
k
∼ N

(
θ|θ̄k ,Vk

)
14: Calculate weights ωi

k
= p

(
zk|μ

i
k
,θi

k

)
15: END FOR

16: FOR j = 1, ...,Ns do

17: Resample state particles with indices ij from probabilities{
ωi
k

}Ns

i=1

18: Assign weights ω
j

k
∝

p
(
zk|x

j

k
,θ

j

k

)

p
(
zk|μij

k
,θ

j
k

)

19: END FOR

Gaussian noise with covariance matrix Qk. The definitions of

the matrices Φk|k−1 and Qk can be found in [15].

As the GNSS receiver tracking loop filters MP interfer-

ences whose relative delays vary with time, the remaining

MP interferences can be modelled as a time-varying bias

affecting the pseudo-range (PR) measurements. In practice,

MP interferences not only depend on the relative position

between the receiver and GNSS satellites, but also on the

environment where the receiver is located, especially in urban

canyons. Thus the MP bias affecting the PR measurements

rapidly changes when the receiver is moving. Since it is

difficult to use a specific propagation model to accurately

capture the dynamics of the MP bias, the bias resulting

from the MP interferences can be considered as an unknown

time-varying parameter vector (that can be assigned a non-

informative prior distribution). Accordingly, the mth in-view

satellite PR measurement model includes an unknown MP bias

at time k and can thus be defined as

Zm,k =

√
(xm,k − xk)

2
+ (ym,k − yk)

2
+ (zm,k − zk)

2

+ bk + θm,k + em,k

(14)

where Zm,k (m = 1, ...,M ) is the PR measurement as-

sociated with the mth in-view satellite, M is the number
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TABLE I
SIMULATION PARAMETERS.

Process noise (velocity) σa = 1 m/s2

Clock offset noise σb = 3c× 10−10 m

Clock drift noise σd = 2πc× 10−10 m/s

GNSS measurement noise σr = 5 m

c = 3× 108 m/s denotes the velocity of light.

of in-view satellites, (xm,k, ym,k, zm,k) and (xk, yk, zk) are

the mth satellite and vehicle positions in the ECEF frame,

bk is the GNSS receiver clock offset, θm,k is the MP bias

associated with the mth PR measurement, and em,k is the mth

satellite PR measurement noise with a Gaussian distribution

em,k ∼ N (
0, σ2

r

)
.

B. Simulation Results

Several simulations have been conducted to study the per-

formance of the proposed approach. The state space model

has been first simulated with the parameters given in Table I.

In theory, the MP error can reach magnitudes close to 0.5

of a code chip, i.e., 150m in the C/A case, depending on

the receiver correlation technology [16]. We have assumed

in this study that the prior density of the MP bias θm
has a non-informative uniform distribution on the interval

(−75m, 75m) at each time instant, i.e., θm,k ∼ U(−75, 75)
where m = 1, ...,M . We have also assumed that there are 4

in-view satellite pseudo-range measurements during the whole

simulation. The simulation time is set to 20s and the estimation

period equals 1Hz. Different MP scenarios have been tested by

randomly adding MP biases of various amplitudes to pseudo-

range measurements of satellites #1 and #2 at specified

time instants. The kernel density-based particle filter was

implemented with 5000 particles and the smoothing parameter

and maximum number of iterations for the kernel density

estimator were set to h = 0.1 and rmax = 10, respectively.

Nm = 50 Monte Carlo simulations have been run for any

scenario to compute the root mean square errors (RMSEs) of

the estimates defined by

√
N−1

m

∑Nm

i=1
(x̂k (i)− xk)

2
, where

x̂k (i) is the ith state estimate, and k = 1, . . . ,K where K is

the number of time instants.

The box plots and RMSEs of 50 MP bias estimates are

depicted in Figs. 1 and 2, respectively. The results reported

in these figures indicate that the proposed approach provides

good results for MP bias estimation. However, due to the

effect of the measurement noise, the variations of the estimated

biases in the absence of MP interferences are larger than

those obtained in the presence of interferences (as shown

in Fig. 1), i.e., the RMSE of bias estimates in absence of

the MP interferences is relatively larger (as shown in Fig.

2). Considering that the parameter estimation procedure is

performed at each time instant in this work, a threshold

depending on the covariance of the measurement noise can

be specified in order to eliminate the effect of unnecessary

MP bias estimates on the state estimate, i.e., the estimate of
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Fig. 1. Box plots of 50 MP bias estimates.

0 5 10 15 20
0

1

2

3

4

5

Time (s)

R
M

SE
 o

f M
P 

bi
as

 (m
)

(a) PR measurement #1

0 5 10 15 20
0

1

2

3

4

5

Time (s)

R
M

SE
 o

f M
P 

bi
as

 (m
)

(b) PR measurement #2

Fig. 2. RMSEs of 50 MP bias estimates.

MP bias can be no longer taken into account in the propagation

step of the proposed approach when θ̄m,k < 2σr.

The successive iterations of θ̄1,k and V1,k for the MP bias θ

affecting the PR measurement #1 at the time instant k = 16
are depicted in Fig. 3. It is clear that θ̄1,k and V1,k converge

quickly to a stationary value with iteration times increasing.

Thus the smooth kernel density associated with the unknown

parameter can be considered as a stationary distribution after
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Fig. 4. RMSEs of state estimates obtained with the proposed approach and
the standard APF. Proposed approach: solid line; standard APF: dashed line.

few iterations. Finally, the RMSEs of the estimated positions

(the horizontal and vertical directions versus time) with the

proposed approach and the standard APF are depicted in Fig.

4. Positioning results can be improved in the presence of

MP interferences due to the fact that the uncertainty in the

measurement model has been reduced by using the proposed

approach. Since the propagation model of the unknown time-

varying parameter is not necessary to take into accounted,

the proposed approach is very appropriate to the case where

parameters of the measurement model are subjected to abrupt

changes.

VII. CONCLUSION

This paper studied a kernel density-based particle filter

to jointly estimate the state vector and the unknown time-

varying parameters in linear/nonlinear dynamical systems. The

proposed approach was obtained by embedding the kernel

smoothing method into the frame of the auxiliary particle

filter. Its performance was evaluated for a localization problem

aiming at estimating a state vector from non-linear state

and measurement equations, in the presence of a possible

additive bias due to multipath. The proposed approach proved

its efficiency for time-varying parameter estimation, resulting

in an improved state estimation accuracy. In this work, the

parameter estimation procedure was performed at each time

instant. Future work includes the consideration of an adaptive

detection rule for determining whether the model parameters

are subjected to abrupt changes or not. This rule would avoid

to estimate the time varying parameter at each time instant,

and would thus allow the computational complexity of the

algorithm to be reduced.
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