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Abstract—This paper presents a novel approach to stereo-
phonic music separation based on Non-negative Tensor Factor-
ization (NTF). Stereophonic music is roughly divided into two
types; recorded music or synthesized music, which we focus
on synthesized one in this paper. Synthesized music signals
are often generated as linear combinations of many individual
source signals with their mixing gains (i.e., time-invariant ampli-
tude scaling) to each channel signal. Therefore, the synthesized
stereophonic music separation is the underdetermined source
separation problem where phase components are not helpful for
the separation. NTF is one of the effective techniques to handle
this problem, decomposing amplitude spectrograms of the stereo
channel music signal into basis vectors and activations of individ-
ual music source signals and their corresponding mixing gains.
However, it is essentially difficult to obtain sufficient separation
performance in this separation problem as available acoustic cues
for separation are limited. To address this issue, we propose a
cepstrum regularization method for NTF-based stereo channel
separation. The proposed method makes the separated music
source signals follow the corresponding Gaussian mixture models
of individual music source signals, which are trained in advance
using their available samples. An experimental evaluation using
real music signals is conducted to investigate the effectiveness
of the proposed method in both supervised and unsupervised
separation frameworks. The experimental results demonstrate
that the proposed method yields significant improvements in
separation performance in both frameworks.

I. INTRODUCTION

Music signals are widely available through various types of
music media, e.g., CDs and download services via the internet,
which we can listen to using several devices, such as portable
audio players, computers, and smartphones. The music signals
are usually composed of many source signals, such as various
instrumental sounds and vocals, and are often presented to the
listener as two-channel, stereophonic signals targeting the left
and right ears of the listener. An effective source separation
technique for breaking up stereophonic music signals into the
individual source signals is expected to be effectively used
in various applications, such as music transcription [1] and
extraction of vocals from music signals [2], [3].

A framework to separate mixed observation signals into
individual source signals using only the mixed observation
signals is known as Blind Source Separation (BSS). BSS is

classified into some problems, depending on the relationship
between the number of the observed signals and the number
of the source signals. If the number of the source signals is
larger than that of the observation signals (i.e., the number
of observation channels), Independent Component Analysis
(ICA) [4] is often applied to BSS. ICA is applicable to build
a time-invariant linear separation filter by assuming indepen-
dence among the source signals. On the other hand, it is
essentially difficult to apply ICA to BSS for the stereo channel
music signals because a time-invariant linear separation filter
is basically ineffective if the number of the source signals
is greater than the number of the observation channels. One
of the effective source separation techniques in such an un-
derdetermined condition is Non-negative Matrix Factorization
(NMF) [5]–[7]. Assuming that time-frequency representations
of the individual source signals are sparse, an amplitude or
power spectrogram of the observation signal is modeled as a
low-rank structure, i.e., a linear combination of fixed spectral
patterns and corresponding time-varying weight patterns called
activations. An estimate of the spectrogram of each source
signal is reconstructed by using the spectral patterns and their
activations corresponding to the source signal, and then, it is
used to design the time-variant separation filter, such as Wiener
filter.

To apply the NMF-based separation technique to the stereo
music signals, it is necessary to extend a standard NMF
framework for handling a single observation signal so as to
also handle a stereo observation signal. This extension has
been well studied as a sound source separation technique using
microphone array. For instance, Multichannel NMF (MNMF)
was proposed [8], [9] to make it possible to effectively
use the spatial information by modeling inter-channel phase
information as well as the amplitude or power spectrograms
of the individual sound source signals. Furthermore, as an
approach to the BSS in an overdetermined condition, Indepen-
dent Low-Rank Matrix Analysis (ILRMA) [10] was proposed
to explicitly use a physical constraint on the spatial mixing
process. These conventional studies have shown that available
acoustic cues, such as the inter-channel phase information or
the special structure of a spatial mixing matrix, are effectively
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used to achieve good separation performance.
In this paper, we address a music source separation problem

focusing on synthesized stereophonic music signals as widely
used music media, which are generated as linear combinations
of many individual source signals with their mixing gains (i.e.,
time-invariant amplitude scaling) to each channel signal. To
apply the NMF-based separation technique to this underdeter-
mined separation problem, NMF is straightforwardly extended
to Nonnegative Tensor Factorization (NTF) to make it possible
to model the mixing gains as well as the amplitude or power
spectrograms of the individual source signals by using a tensor
representation (i.e., a multidimensional array). However, it is
actually difficult to achieve sufficient separation performance
in this framework because available acoustic cues for separa-
tion are limited. In the synthesized stereophonic music signals,
inter-frame phase information is not helpful for the source
separation. Therefore, it is necessary to develop a framework
making it possible to effectively use prior information as an
additional cue for separation.

In order to improve separation performance of the NTF-
based separation technique in the synthesized stereophonic
music signals, we propose a cepstrum regularization method
for the NTF-based stereo channel separation, inspired by a
source separation technique using a similar idea [11]. As a
prior information on the individual source signals, statistical
characteristics of their timbre features are modeled as proba-
bility density functions (p.d.f.s) of their cepstral coefficients,
which are trained in advance using available samples of the
individual source signals. And then, the proposed method uses
a novel objective function additionally consisting of negative
likelihoods of the p.d.f.s for the separated source signals as
a regularization term, which makes the timber features of the
separated source signals close to those modeled by the p.d.f.s.
The proposed method can be applied to both an unsupervised
separation framework to estimate all NTF parameters and a
supervised separation framework to estimate only a part of
them [12]. An experimental evaluation is conducted in both
supervised and unsupervised separation frameworks, demon-
strating that the proposed method yields significant separation
performance improvements in both frameworks.

II. MIXING PROCESS ASSUMED IN STEREO
CHANNEL MUSIC SIGNAL

We assume that the observed stereo channel music signals
are obtained by panning (i.e., controlling amplitude of) each
composing music source signal to left and right channels and
then mixing the resulting stereo channel signals of individual
music source signals. In the NTF-based separation, we further
assume that this mixing process is approximately applied to
the amplitude/power spectral domain.

Let S ∈ RK×N×C , G ∈ RM×C , and X̂ ∈ RK×N×M

represent stereo channel observation signals, a panning gain
matrix, and composing music source signals in the ampli-
tude/power spectral domain, which K, N , M , and C denote
the total numbers of frequency bins, time frames, sources, and
channels. Furthermore, X̂ is decomposed to a set of basis

Fig. 1. Frequency-independent gain NTF

vectors T ∈ RK×B×M , and their corresponding activations
U ∈ RB×N×M by using NMF, where B denotes the number
of basis vectors for each composing music source signal. Each
estimate of the stereo channel observation signals ŝknc and that
of the low-rank representation of the composing music source
signals x̂knm are respectively modeled as follows:

ŝknc =
∑
m

gmcx̂knm, (1)

x̂knm =
∑
b

tkbmubnm, (2)

where k ∈ {1, . . . ,K}, b ∈ {1, . . . , B}, n ∈ {1, . . . , N},
m ∈ {1, . . . ,M}, and c ∈ {1, . . . , C} are indices of frequency
bins, basis vectors, frames, sources, and channels, respectively.
The variables, gmc, tkbm, and ubnm, represent components
of the parameter sets to be estimated while all of them are
nonnegative. This mixing process is represented as NTF to
decompose tensor-form observations into tensor-form factors.
In this paper, this decomposition method is called frequency-
independent gain NTF (as shown in Fig. 1) because the
panning gain is fixed and independent over frequency.

III. PROPOSED METHOD: NTF WITH CEPSTRUM
REGULARIZATION

The use of prior information on the composing music source
signals is expected to be helpful for finding reasonable solu-
tions of the parameter estimation in the frequency-independent
gain NTF. In this paper, we propose a cepstrum regularization
method for the frequency-independent gain NTF. Spectral
envelope of each composing music source signal is parameter-
ized into cepstrum, and then, its probability density is modeled
with a Gaussian Mixture Model (GMM), which is trained in
advance using available training data. In parameter estimation
of the NTF, negative likelihood of the GMM for the separated
composing music source signal is used as the regularization
term. An overview of the proposed NTF with the cepstrum
regularization is shown in Fig. 2.

A. Introduction of Cepstrum Regularization

The objective function with the cepstrum regularization to
be minimized is defined as follows:

I(θ) = D·(S|Ŝ) + λK(X̂ ), (3)

where D·(S|Ŝ) is an error function between the observations
and the estimates given in Eq. (1). λ is a regularization
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Fig. 2. Overview of the proposed NTF with cepstrum regularization.

parameter, and K(X̂ ) is a cepstrum regularization term for
estimates of the individual composing music source signals
X̂ . The cepstrum regularization term is defined as a sum of
the negative log-scaled likelihoods of the source-dependent
GMM for cepstral sequences of X̂ over all composing music
source signals, which is given by

K(X̂ ) =
∑
n,m

[
− log

∑
p

wpm

∏
q

N (Eqnm;µqpm, σ
2
qpm)

]
,

(4)

where Eqnm is the cepstrum feature of the individual esti-
mated sources. In this paper, we use Mel-Frequency Cepstral
Coefficients (MFCCs) as the cepstrum feature, which is given
by

Eqnm =
∑
r

cqr log

∣∣∣∣∑
k

frkx̂km

∣∣∣∣, (5)

where f = {frk} ∈ RR×K , and c = {crk} ∈ RQ×R are a R-
dimensional filter-bank matrix, and an inverse cosine transform
matrix, respectively. A p.d.f. of the 1st-through-Qth cepstral
coefficients (q ∈ {1, · · · , Q}) of each composing music source
signal is modeled with the corresponding source-dependent
GMM, of which parameters

{
µpm,Σpm, wpm

}
consisting of

mixture-dependent mean vectors µpm = (µp1m, . . . , µpQm)T,
covariance matrices Σpm = diag(σ2

p1m, . . . , σ
2
pQm), and mix-

ture component weights wpm, are estimated in advance using
available samples of the composing music source signal as
training data. The regularization term works so that spectral
envelopes of the estimated composing music source signals
are similar to the desired ones, which are modeled with the
source-dependent GMMs.

B. Auxiliary function design

The auxiliary function approach [13] is applied to parameter
estimation. Firstly, we design an upper bound function of
the error function D·(S|Ŝ). In this paper, we use the KL-
divergence;

DKL(y|x) = y log
y

x
− (y − x), (6)

as the error function. From the Jensen’s inequality, we obtain
the following upper bound function of the error function:

DKL(S|Ŝ)

=
∑
k,n,c

[
sknc log

sknc
ŝknc

− (sknc − ŝknc)
]

c
≤

∑
k,b,n,m,c

[
gmctkbmubnm − skncαkbnmc log

gmctkbmubnm
αkbnmc

]
(7)

where
c
≤ denotes an inequality only for the parameters to

be estimated, and α = {αkbnmc} is a variable satisfying∑
b,m αkbnmc = 1, in which equality holds when

αkbnmc =
gmctkbmubnm

ŝknc
. (8)

Next, we design an upper bound function of the regulariza-
tion term K+(X̂ ). By applying similar manner as described
in [14], we obtain the following upper bound function of the
regularization term:

K(X̂ )

c
≤

∑
r,n,m

[
Arnm

{∑
k,b

ϕ2rkbnm
frktkbmubnm

+ p(ξknm)ςrnm + q(ξrnm)

}
− δBrnm<0 |Brnm|

∑
k,b

ψrkbnm
frktkbmubnm
ψrkbnm

+ δBrnm≥0 |Bknm|
{
ςrnm
ζrnm

+ log ζrnm − 1

}]
, (9)

where A = {Arnm}, B = {Brnm}, and ς = {ςrnm} are
respectively as follows:

Arnm =
∑
p,q

βpnmc
2
qr

2σ2
pqmωpqrnm

, (10)

Brnm = −
∑
p,q

βpnmcqrγpqrnm
σ2
pqmωpqrnm

, (11)

ςrnm =
∑
k,b

frktkbmubnm. (12)

Moreover, p(ξrnm) and q(ξrnm) are given by

p(ξrnm) =
2 log ξrnm
ξrnm

+
1

ξ2rnm
, (13)

q(ξrnm) = (log ξrnm)2 − 2 log ξrnm −
2

ξrnm
, (14)

respectively, and δx is indicator function being 1 when the
condition x is satisfied, and 0 otherwise. Equality in Eq. (9)
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holds when

βpnm =
wpm

∏
qN (Eqnm;µpqm, σ

2
pqm)∑

p′ wp′m

∏
q′ N (Eq′nm;µp′q′m, σ2

p′q′m)
, (15)

γpqrnm = cqr log ςrnm + ωpqrnm(µpqm − Eqnm), (16)

ξrnm = ζrnm = ςrnm =
∑
k,b

frktkbmubnm, (17)

ϕrkbnm = ψrkbnm =
frktkbmubnm∑

k′,b′ frk′tk′b′mub′nm
, (18)

where β = {βpnm} and γ = {γpqrnm} are variables satisfying∑
p βpnm = 1 and

∑
r γpqrnm = µpqm, respectively, and

ω = {ωpqrnm} is an arbitrary positive constant satisfying∑
r ωpqrnm = 1.

C. Parameter estimation

The auxiliary function of the objective function is repre-
sented as a sum of the upper bound functions given by Eq. (7)
and Eq. (9). By partially differentiating the auxiliary function
with respective parameters and setting the resulting derivatives
to 0, we obtain update rules for each parameter as follows:

gmc ←
∑

k,b,n skncαkbnmc

tkbmubnm
, (19)

tkbm ←
−bkbm +

√
b2kbm − 4akbmckbm
2akbm

, (20)

ubnm ←
−ebnm +

√
e2bnm − 4dbnmfbnm
2dbnm

, (21)

where akbm, bkbm, ckbm, dbnm, ebnm, and fbnm are respec-
tively given as follows:

akbm =
∑
n,c

gmcubnm + λ
∑
r,n

Arnmp(ξrnm)frkubnm

+ λ
∑
r,n

δBrnm≥0|Brnm|
ζrnm

frkubnm, (22)

bkbm =−
∑
n,c

skncαkbnmc − λ
∑
r,n

δBrnm<0|Brnm|ψrkbnm,

(23)

ckbm =− λ
∑
r,n

Arnm
ϕ2rkbnm
frkubnm

, (24)

dbnm =
∑
k,c

gmctkbm + λ
∑
r,k

Arnmp(ξrnm)frktkbm

+ λ
∑
r,k

δBrnm≥0|Brnm|
ζrnm

frktkbm, (25)

ebnm =−
∑
k,c

skncαkbnmc − λ
∑
r,k

δBrnm<0|Brnm|ψrkbnm,

(26)

fbnm =− λ
∑
r,k

Arnm
ϕ2rkbnm
frktkbm

. (27)

IV. EXPERIMENTAL EVALUATIONS

A. Experimental conditions

We conducted a music source separation experiment using
real music signals. We used three songs of music data dis-
tributed from Cambridge Music Technology [15]; two of them
were used for training data, and the other was used for evalu-
ation data. Source signals of these music data were separately
available, and three source signals (i.e., Bass, Drums, and
Vocals) were used in the experiment. The individual source
signals were separately used for the training. For the evalu-
ation, stereophonic music signals were generated by mixing
them by setting the panning gain to left and right channels to
2:1, 1:2, and 1:1 for Bass, Drums, and Vocals, respectively. All
music signals were down sampled from 44.1 kHz to 16 kHz,
and spectrograms were obtained with frame analysis using
32 ms window and 16 ms shift.

We evaluated the separation performance of the proposed
method in both the unsupervised separation framework where
all NTF parameters were estimated and the supervised sepa-
ration framework where only the panning gain and activation
matrices were updated while the basis vectors were set to those
optimized using the training data. In evaluation, the parameters
to be estimated were first updated 200 times without the
cepstrum regularization, and then, they were further updated
200 times using the cepstrum regularization. The separation
performance was evaluated in each setting of the regularization
parameter, i.e., λ = 0, 10−3, 10−2, 10−1, 1, 10, 102 and 103,
where λ = 0 was equivalent to the NTF-based separation
without the cepstrum regularization updating the parameters
400 times. In order to reduce the effect of random parameter
initialization on the separation performance, the separation
process was conducted ten times by changing an initial setting
in each condition. The number of basis vectors was set to 50
for each music source signal. A time sequence of the MFCCs
was extracted from each source signal, and then, the source-
dependent GMM was trained using it. MFCC orders and the
number of mixture components were determined through our
preliminary experiment.

As the performance measurements, Signal to Distortion
Ratio (SDR), Signal to Interference Ratio (SIR), and Signal
to Artifact Ratio (SAR) of the estimated stereo channel music
source signals were calculated using BSS EVAL toolbox [16].
These measurements were calculated in each channel, and
then, they were averaged over two channels.

B. Experimental Results

Figure 3 shows results of SDR, SIR, and SAR in the
unsupervised and supervised separation. In each figure, the
horizontal axis shows a setting of the regularization parameter
and the vertical axis shows each performance measurement.
Separation performance of each source signal is shown sepa-
rately in the figure. Note that results of the NTF without the
cepstrum regularization are shown as λ = 0.

We can see that the proposed cepstrum regularization yields
significant performance improvements in both unsupervised

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1014



0

10

-3

10

-2

10

-1

1

10

1

10

2

10

3

Regularization parameter 

6

8

10

12

14

S

D

R

 

[

d

B

]

Ba (Unsupervised)

Dr (Unsupervised)

Vo (Unsupervised)

Ba (Supervised)

Dr (Supervised)

Vo (Supervised)

w/o Regularization

0

10

-3

10

-2

10

-1

1

10

1

10

2

10

3

Regularization parameter 

12

14

16

18

20

22

S

I

R

 

[

d

B

]

Ba (Unsupervised)

Dr (Unsupervised)

Vo (Unsupervised)

Ba (Supervised)

Dr (Supervised)

Vo (Supervised)

w/o Regularization

0

10

-3

10

-2

10

-1

1

10

1

10

2

10

3

Regularization parameter 

8

10

12

14

S

A

R

 

[

d

B

]

Ba (Unsupervised)

Dr (Unsupervised)

Vo (Unsupervised)

Ba (Supervised)

Dr (Supervised)

Vo (Supervised)

w/o Regularization

Fig. 3. Separation performance for each source signal in unsupervised and supervised separation. The cepstrum regularization is not used if the regularization
parameter λ set to 0.

and supervised separation frameworks by suitably setting
the regularization parameter λ to around 1 to 102. In such
a suitable setting, we can also see that the unsupervised
separation performance outperforms the supervised separation
performance. On the other hand, if the cepstrum regularization
is not used (i.e., λ = 0), the unsupervised separation perfor-
mance significantly degrades and it becomes worse than the
supervised separation performance. These results suggest that
1) the supervised separation performance is limited because
the basis vectors are strongly affected by acoustic mismatches
between training data and evaluation data, 2) the update of the
basis vectors is helpful for compensating those mismatches
but it is difficult to be achieved in the standard NTF-based
separation, and 3) the proposed NTF-based separation with
the cepstral regularization is capable of effectively updating
the basis vectors as well and yielding significant improvements
in separation performance. We can also see that the separation
performance strongly depends on the individual source signals
and the proposed method is more effective for the source
signals causing relatively low separation performance.

V. CONCLUSIONS

In this paper, we have proposed a method for synthesized
stereophonic music separation based on Nonnegative Tensor
Factorization (NTF) with cepstrum regularization. The pro-
posed method makes it possible to consider statistical charac-
teristics of timbre features of individual source signals as prior
information for separation. The cepstrum regularization works
as a soft constraint to update the NTF parameters including
basis vectors, and therefore, acoustic mismatches between
training data and evaluation data are handled well. From
the experimental results, it has been demonstrated that the
proposed method yields significant improvements in separation
performance compared to the standard NTF-based method
without the cepstrum regularization. Furthermore, it has also
been demonstrated that the proposed method is effective for
both an unsupervised separation framework and a supervised
separation framework.

We plan to further investigate the effectiveness of the
proposed method for various music sources and also improve
its separation performance by enhancing the individual source-
dependent models so as to accurately model acoustic charac-
teristics of the individual music source signals. In addition, we

also plan to study an optimization method of the regularization
parameter that strongly affects separation performance.
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