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Abstract—Wave Field Synthesis (WFS) is a spatial sound
reproduction technique aiming at a physically accurate recon-
struction of a desired sound field within an extended listening
area. It was shown in a recent study that the accuracy of
the synthesized sound field can be improved in a local area
by applying a spatial band-limitation to the driving function.
However, the computational complexity of the frequency-domain
driving function is demanding because of the involved Bessel
functions. In this paper, a time-domain WFS driving function
is introduced for the synthesis of a spatially band-limited plane
wave. The driving function is obtained based on a time-domain
representation of the sound field which is given as a superposition
of plane waves with time-varying direction and amplitude. The
performance of the proposed approach is evaluated by numerical
simulations. Practical issues regarding the discretization of the
analytic driving function and dynamic range control are dis-
cussed.

I. INTRODUCTION

Wave Field Synthesis (WFS) and Near-field Compensated
Higher-order Ambisonics (NFC-HOA) are two well known
sound field synthesis techniques developed for a physically
accurate reconstruction of a desired sound field using a loud-
speaker array [1]-[5]. The loudspeakers, termed secondary
sources, are driven in such a way that the superposition of
the individual sound fields matches the desired field. One
of the main difference between WFS and NFC-HOA is the
mathematical representation of the desired sound field, from
which the driving function is derived. In NFC-HOA, the
sound field as well as the driving function are given as a
spherical/circular harmonics expansion with respect to the
center of the spherical/circular secondary source distribution.
In a practical system, only a finite number of secondary
sources are available which constitutes a discretization of the
secondary source distribution leading to spectral repetitions
in the harmonics domain [6]. To avoid spectral overlap, i.e.
spatial aliasing, the harmonics expansion is truncated to a finite
order [7, Sec. 4.4.1]. Typical NFC-HOA driving functions
thus have finite spatial bandwidth, whereas conventional WFS
driving functions exhibit infinite spatial bandwidth [8].

While such a spatial band-limitation causes deviations in
representing a sound field, there are also benefits that can be
exploited. As observed in a number of studies [4], [9], the
synthesized sound field of NFC-HOA exhibits high accuracy
at the center of expansion. This comes at the cost of impaired
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physical and perceptual qualities at off-center positions [8]—
[10]. Therefore, NFC-HOA can be considered as a sound field
synthesis technique aiming at an accurate synthesis within a
local region, called local sound field synthesis. The location
of the local listening area can be moved by re-expanding the
sound field with respect to the center of the respective local
listening area [11], [12].

The same principle can be applied to WFS. In [13], the
WFES driving functions were derived based on an order-limited
circular/spherical harmonics expansion of the desired sound
field. As expected, an improved performance was achieved in
the region centered around the expansion point. However, the
driving functions introduced in [13, Table. 1] are available
only in the time-frequency domain, and their implementation
is computationally demanding as it requires the computation
of Bessel and spherical Bessel functions.

In this paper, a time-domain driving function is proposed
for the synthesis of a Dirac-shaped plane wave that exhibits
a limited spatial bandwidth. The driving function is derived
based on an analytic time-domain representation of the sound
field (Sec. II). Two different derivations are introduced both
of which lead to the same result. One is based on a circular
harmonics expansion while the other on a plane wave decom-
position. The proposed WES driving function (Sec. III) is able
to synthesize the sound field of a plane wave with a signifi-
cantly reduced computational complexity. The spatio-temporal
structure and the spectral responses of the synthesized sound
fields are investigated by numerical simulations (Sec. V).
Nomenclature A position vector is denoted by lowercase
boldface x. The angular frequency is denoted by w = 27 f
with f being the temporal frequency. The speed of sound is
denoted by c and the imaginary unit by ¢. Plane waves are
assumed to propagate parallel to the zy-plane. The propa-
gation direction is characterized by a normal vector n,, =
(cos D, SIN P, 0) where ¢,, denotes the azimuth angle.

II. TIME-DOMAIN REPRESENTATIONS OF A SPATIALLY
BAND-LIMITED PLANE WAVE

A. Circular Harmonics Expansion

The sound field of a monochromatic plane wave
e~tcrcos(@=m) can be represented as a circular harmonics
expansion for a given expansion center x. [14, (2.44)]. By
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truncating the order to +M, the infinite summation reduces
to a finite series
S(x — X, w) =
M

w
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where J,,,() denotes the Bessel function of order m. The
inner product of two vectors is denoted by (-,-). Note that
the truncated expansion is now an approximation of the plane
wave with a limited accuracy [15]. The local coordinate system
is defined as x' = x — x. = (' cos ¢’, ' sin ¢’, 0). Without
loss of generality, x. = 0 is assumed in the remainder, thus
r =7 and ¢ = ¢.

The inverse Fourier transform of the Bessel function in (1)

reads 'mH(Ct)T (<)
.7:71{:]7n “ }:L Zr. 7T
(er)p=— GEE
which can be obtained by reformulating Eq. (11.4.24) in [16].

T, () denotes the Chebyshev polynomial of the first kind of
degree m, and II (%) a rectangular function
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The time-domain representation of (1) is thus obtained by

replacing J,,,(%r) with (2),
s(x,t)
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c m=—M
1 (s) im (6 —dp)
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In the second equality, —<* and /(£)% — 2 were replaced
by cos 5(t) and |sin (t)|, respectively. Equation (5) can be
further simplified by exploiting 7}, (cos@) = cos(m#@) [16,
(22.3.15)] and the addition formula of cosine functions [16,
(4.3.36) and (4.3.37)]

s(x,t)
L) ¢

=TT a0 E im(d—dpw)
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where Dy/(0) = sin (22216) /sin (§) denotes the periodic
sinc function.
B. Plane Wave Decomposition

The time-domain representation can also be obtained from
a plane wave decomposition

<0

t>0

Fig. 1. Left: Simulated plane wave with a spatial bandwidth of M = 29.

Snapshots for different time instances are shown in dB. Right: Illustration
r

of a spatially band-limited plane wave for —< < ¢t < 0. The original
(Dirac-shaped) plane wave § (¢t — < cos(¢ — ®pw)) is indicated by ==. The
expansion center is denoted by x.. The sound field consists of an infinite
number of plane waves, forming a circular wavefront with radius |ct|. Two
instantaneous plane waves = passing x propagate with angles of ¢p+m+3(t).

where the sound field is given as a superposition of a con-
tinuum of plane waves. S(a,w) denotes the spectral weight
of the plane wave propagating in the direction of n, =
(cos o, sin @, 0). The time-domain representation of (8) reads

2m
s(x,t) = %/0 5(c,t) %, 6 (t — Lcos(¢p — ) dr,  (9)

where 5(c, t) denotes the inverse Fourier transform of S(c, w)
and *; the time-domain convolution. For a spatially band-
limited plane wave, the plane wave decomposition coefficients
are merely weights given as a periodic sinc function [17,

4.95)] S(a) = 3(a) = Dy(a — ¢,,) and the time-domain
plane wave decomposition is given as
1 2
s(x,t) = o /DM(a — )0 (t — L cos(¢p — a))der. (10)
T -
0

Since the argument of & (t — Zcos(¢p —
zeros for t € [—Z, 7] [18, (1.180a)]

§(p—a—Bt)+m)+d(p—a+B(t)+)

@)) has only simple

§(t—Lcos(¢p—a)) = L] —sin B(t)|

—< = cos A(t). Equation (10) is thus rewritten as
Lom(s)
2m | sin (1)
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with

s(x,t) = (11)

which leads to the same result as (5). Equation (11) shows
more clearly that the sound field is a superposition of two
plane waves. For brevity, the propagation angles are denoted

) as ¢=(t) = ¢+m=+p(t) with the corresponding normal vectors
_ - g —i%rcos(¢—a) .
S(x,w) = o S(a,w)e da, (®) nl:)tw(t) = (cos (b;vtv(t), sin (ﬁpf(t), 0). (12)
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For t = £+Z, there is only one plane wave propagating in ¢
and ¢ + 7 respectively.

The spatial structure of a spatially band-limited plane wave
is illustrated in Fig. 1. The wavefronts of two instantaneous
plane waves intersect at x. The circular wave front of radius
|ct| is a result of the superimposed plane waves, which
converge toward the expansion center for ¢ < 0 and then
diverge for ¢t > 0.

III. WAVE FIELD SYNTHESIS

The theory of WFS is based on the Kirchhoff-Helmholtz
integral equation, which states that a homogeneous sound field
within a source-free volume can be recreated by a continuous
distribution of elementary sources on the surface. A high-
frequency/far-field approximation is applied to the integral
equation, thereby obtaining a formula that only consists of
secondary monopoles. As a result, the driving function is given
as the directional gradient of the desired sound field evaluated
on the surface. For a more comprehensive introduction to
WES, the reader is referred to [3] and [5, Ch. 2].

In this paper, the desired sound field is synthesized by using
a set of secondary point sources located in the zy-plane. Such
a configuration is called 2.5-dimensional, due to the mismatch
of the dimensionality between the sound field (2D) and the
acoustic properties of the secondary sources (3D).

A. Driving Functions

The 2.5D WES driving function for a plane wave with
reference point X reads [5, (2.177) and (2.178)]

D(x0, Xpef, w)
= a(xo, %O\/E\/M@Pw’ no(xp))e
in the time-frequency domain and
d(X0, Xref, 1) = heg(t)
- {a(xo, Do) V/BTT][X0 — et || (Dpys, 10 (x0))6 (¢ — mpzx))}

13)

—i% (npy%)
(14)

in the time domain. As illustrated in Fig. 2, the normal
vector ny(xg) = (oS ¢p,sindy,0) is an inward pointing
vector defined for a given secondary source at xo € 0.
The secondary source selection window a(xp) assures that
the propagation of the synthesized sound field is correct [19,
(5)]. For virtual plane waves, it is given as

a(x0, Pp) = {1’ (npw, no(x0)) = 0 . as)

0, otherwise

The term +/||Xo — Xref|| mediates the amplitude decay errors
occurring in 2.5D WEFS. In this paper, the expansion center is
chosen as the reference point, Xy = X.

The spectral weight /7% in (13) is realized by the pre-
equalization filter heq(t) which is applied to the individual
source signals or to the loudspeaker signals [19]. For conve-
nience, heq(t) is omitted in the following derivation.
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Fig. 2. Instantaneous plane waves passing a secondary source ® € 9. The
plane waves 5 and Sg propagates in the direction of ¢y + 7 + [(t) and
¢o + m — [(t) respectively. The angles between the plane wave directions
n‘:ﬁ, and the normal vector ng are indicated by shaded arcs. According to the
secondary source criteria (15), the blue plane wave is activated whereas the red
plane wave is deactivated, since (1.}, no(xo)) > 0 and (n,,, ny(x0)) < 0.

For the synthesis of a spatially band-limited plane wave,
the driving function (14) is applied to the instantaneous plane
waves in (7) and thus

_ J2r_1(5)
Ao, 1) = \/:y sin A(D)|
x [a(xo0, d) (055, (), 10 (x0)) Das( 9=+ 7+ (1))
(X0, G ) e (£), 20 (%0)) Dar( = 7= B(1)) |

Note the time-dependencies of the secondary source selection
windows and the scalar products due to the varying plane wave
directions.

An alternative time-domain driving function can be derived
from plane wave decomposition (9)

2m
X(), =\ = / XO; na7n0(X0)>

X Do — ¢, )6 (t — = cos(¢ —

where the plane wave driving function (14) is applied to the
individual plane waves in (9).

(16)

a))da, (17)

IV. PRACTICAL IMPLEMENTATION
A. Discretization

To be implemented in a practical system, the driving func-
tion (16) has to be sampled uniformly in the time domain, i.e.
t, = n/ fs. Note that a sampling in the time domain constitutes
a sampling of the plane wave directions ¢=(¢t) for [t| < L.
Due to the nonlinear dependency of qu‘i(t) on t, the sampled
plane wave angles ¢ (n/f;) have a nonuniform distribution
in [0,27). For a given sampling frequency fs, the number of
plane waves is Npy ~ 2—! fs- For each secondary source, a
different set of plane waves are selected.

A higher temporal resolution can be achieved by computing
the driving function at a higher sampling rate, and then
downsampling it to the original sampling rate. This will reduce
the time-domain aliasing to some extent but not completely,
since the Bessel functions in (1) are not band-limited [16,
Ch. 9]. An analytic anti-aliasing filter can be used to suppress
the aliasing artifacts, but this is out of the scope of this
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paper. Using a higher sampling rate improves also the spatial
resolution of the driving function, as the number of plane
waves increases proportional to f;.

The second driving function (17) is discretized separately
in the temporal and spatial domain. In the time domain, the
individual plane waves denoted by the Dirac delta function §(-)
are realized by rounded integer delays or by fractional delay
filters [20]. In either case, the signal carried by the plane wave
is low-pass filtered thereby avoiding temporal aliasing. In the
spatial domain, the plane wave angle « is discretized, and thus
the integral is replaced by a summation. In this paper, uniform
sampling is considered, o, = ?\’;—:, v=0,...,Npw—1L

Although both sampling schemes are independent from
each other, there is an interrelation when a large number
of plane waves are synthesized in order to achieve a high
spatial resolution. In this case, it is crucial to maintain a high
temporal resolution by using fractional delay filters. Otherwise
(using integer delays), two or more plane waves may have
identical driving functions and increasing the number of plane
waves has no benefit, similar to the observation in [21]. The
number of required fractional delay filters is proportional to
the number of plane waves and to the number of secondary
sources. Therefore, higher spatial resolution comes at the cost
of higher computational complexity.

B. Dynamic Range Control

If the driving function is sampled close to ¢t = i%, the term
WIIB(H in (16) tends to infinity. To avoid numerical problems,
a soft-knee limiting function,

o 2Athl’ U
L(u) = - arctan (2Alhr) , (18)

is applied to the latter term, where the threshold Ay, deter-
mines its maximum value. Note that the driving function is
more compressed around ¢ = +Z where most of the high-
frequency components are present. Such a dynamic range
control thus has a low-pass filtering effect and alleviates the
effects of temporal aliasing.

V. EVALUATION

The driving functions proposed in this paper are used for
the synthesis of a virtual plane wave. The plane wave is
assumed to propagate parallel to the zy-plane with an azimuth
angle ¢,, = —7. The desired sound field is expanded with
respect to an expansion center up to the order of M = 29.
A circular array of 60 secondary sources are used which are
equiangularly placed on a circle with radius of 1.5 m. The
secondary sources are assumed to be ideal point sources. The
sampling frequency is set to f; = 44.1 kHz and the speed of
sound is assumed to be ¢ = 343 m/s.

The time-domain driving function (16) is shown in Fig. 3
(top) for different expansion positions, x. = (0,0,0) and
(0.5,0,0). The peaks of the driving functions are found on
the same v-shaped contour, but the detailed temporal structure
differs due to the spatial shift of the harmonics expansion. The
acausality of the driving functions is attributed to the definition

ISBN 978-0-9928626-7-1 © EURASIP 2017

2 20 2 20

0
z "%éb; -40

t/ms
t/ms

0 10 20 30 40 50 60 dB 0 10 20 30 40 50 60 dB
secondary source index n secondary source index n

. i, ,
A A TS
. <. e <,

-

-
-

»

. %)

/m
a
»2 2a
1= ‘e
>

v
S

> <

<
Treeevve®
0 1
x/m

Fig. 3. Driving functions (top row) computed according to (16) and the
synthesized sound fields (bottom row) of a spatially band-limited plane wave
(M = 29, ¢p» = —7). The expansion center is x. = (0,0,0) in the left
column and x. = (0.5, 0,0) in the right column. The snapshots of the sound
fields are taken at ¢ = O ms. The plane wave directions are indicated by
black arrows, the base of which lies on the respective expansion center. The
secondary sources (N = 60) are uniformly distributed on a circle (rg =
1.5 m)

of the plane wave which passes the origin at ¢ = 0. For a
practical implementation, a pre-delay has to be applied.

The driving functions are used for the synthesis of the
desired sound field, and the time snapshots (¢ = 0 ms) of
the synthesized sound fields are shown in Fig. 3 (bottom).
The direction of the desired plane wave is indicated by black
arrows, and the base of each arrow is placed on the center
of expansion x.. The narrow wavefront observed around x.
indicates that the local sound field exhibits a high accuracy
throughout a wide frequency range. In lateral positions, on the
other hand, a low-pass filtered response is expected because
of the wide wavefront. This agrees with the observation in
the previous study [13]. Note also that the sound field for
x. = (0,0,0) resembles the sound field of a typical NFC-HOA
system [7, Fig. 5.16] where a similar spatial band-limitation
was applied.

The spectral properties of the synthesized sound fields
are examined in Fig. 4. The results in the bottom row are
computed with an oversampled rate fJ =2 X fs = 88.2 kHz.
The leftmost column shows the influence of the dynamic range
control introduced in IV-B. The higher the threshold, the more
high frequency components are observed. Nearly flat responses
were obtained with Ay, = 17 (top) and Ay, = 24 (bottom).

The right six figures in Fig. 4 show the frequency responses
of the synthesized sound field at different receiver positions
which coincide with the respective expansion center x.. Here,
the proposed driving function (CHT) is compared with the
driving function given in (17). The latter was implemented
with and without fractional delay filters (PWD-f and PWD-i,
respectively). For PWD-f, 20-th order Lagrange filters were
used. As can be seen, the proposed driving function (CHT)
achieves a comparable performance to the implementation
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Fig. 4. Frequency responses of the synthesized sound field. The driving function (16) is computed with (bottom, ff = 88.2 kHz) and without (top,
fs = 44.1 kHz) oversampling. The corresponding number of plane waves are 385 and 771, respectively. The influence of dynamic range control is shown in
the leftmost column where Ay, is varied between 10 and 50 with interval of 10. Ay, = 17 (top) and Ay, = 24 (bottom) achieve nearly flat responses (red
lines). The right three columns compare the driving functions (16) (CHT) and (17) (PWD-i: integer delay, PWD-f: fractional delay).

using fractional delay filters, with a much lower computational
cost.

Oversampling the driving function clearly improves the
spectral accuracy. It removes the high frequency bump which
is a result of temporal aliasing. The low frequency roll-off
is a typical characteristic of WFS, which is attributed to the
high-frequency approximations mentioned in III.

VI. CONCLUSION

In this paper, a time-domain WFS driving function is
introduced for the synthesis of a spatially band-limited plane
wave. It is based on the analytic time-domain representation
of the sound field, which was derived directly from the
circular harmonics expansion as well as from the plane wave
decomposition. It was shown that the time-domain sound field
can be interpreted as a continuum of plane waves, and the
amplitudes and directions of the instantaneous plane waves
were identified. Based on the analytic representation, the WFS
driving function was derived and used in a 2.5D scenario. The
proposed driving function is able to synthesize a plane wave
with an improved local accuracy, which suggests its usage
for local sound field synthesis. The spectral distortion of the
sound field is comparable to the direct implementation of plane
wave decomposition, but with a much lower computational
complexity.

It is still an open question how to perform the dynamic range
control and anti-aliasing filtering at the same time. Although
an optimal value for Ay, can be found empirically, a more
sophisticated method is desirable. Perceptual evaluation and
comparison with other existing local WFS approaches [22],
[23] remain as future work.
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