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Abstract— In block sparse vector recovery problems we are
interested in finding the vector with the least number of active
blocks that best describes the observation. The convex relaxation
of that problem, typically used to reduce complexity, is strictly
equivalent with the original problem only when certain conditions
are met, such as Restricted Isometry Property, Null Space
Characterization, and Block Mutual Coherence. In practice,
those conditions may not be satisfied, which implies that solving
the relaxed problem may not retrieve the block sparsest solution.
In this paper, we propose a weighted approach, which, in the noise
free case and under certain conditions guarantees that the relaxed
problem solution has the same support as the sparsest block
vector. The weights can be obtained based on a low resolution
estimate of the group sparse signal.

I. INTRODUCTION

Compressed Sensing (CS) and Sparse Signal Recovery
emerge in many signal processing applications, including
biomedical imaging [1], [5], [13], [15], [19], and radar [3], [4],
[11], [14], [20]. In sparse signal recovery, we are interested
in finding the best possible representation for the observation
vector using a vector with the smallest number of non-zero
entries. Mathematically, this can be represented as

(PL0)
min ‖x‖0

Subjet to: y = Ax
(1)

where the `0-norm, ‖.‖0, represents the number of non-zero
entries in a vector, x ∈ Rn×1 is the minimization variable,
A ∈ Rr×n is the dictionary matrix, and y ∈ Rr×1 is the
observation vector. It has been shown that (1) is an NP-hard
problem [16]. To tackle the complexity associated with the
`0-norm problem, a relaxed convex `1-norm approximation is
often used to find a sparse solution. The mathematical model
of the relaxed problem can be written as

(PL1)
min ‖x‖1

Subject to: y = Ax
(2)

The problems (PL0) and (PL1) are said to be strictly equivalent
if they both have a unique solution and the two solutions
coincide [21]. When the problem (PL0) has multiple solutions,
and the solution of (PL1) coincides with one of the solutions of
(PL0), then we say that (PL0) and (PL1) are equivalent [21].
(PL0) and (PL1) are strictly equivalent when certain conditions
are met, such as the Restricted Isometry Property (RIP) [6], the
Null Space Property (NSP) [7], the Mutual Coherence [8], or
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the Range Space Property (RSP) of order K [21]. In practice
however, those conditions may not be met, which means that
the least `1-norm solution and the least `0-norm solution are
not the same. In [1], a weighted approach is proposed for
recovering the support of the sparsest solution in cases in
which the dictionary matrix exhibits high coherence. Also,
in [12], the optimal choice of the weights for the weighted
approach, such that minimum amount of measurements is
needed for exact recovery using the location of the support
of the signal is discussed.

In some applications, it is known in advance that the non-
zero entries of the underlying sparse vector occur in groups,
a properties known as block sparsity. In block sparse signal
recovery problems, we are interested in finding the vector with
the least number of non-zero blocks that explains the observed
vector. If we let m represent the number of groups in x, the
block sparsest vector estimation problem can be written as
[10]

(PG0)
min

∑m
i=1 I(‖xi‖2)

Subject to y = Ax (3)

where I =

{
1 if ‖xi‖2 > 0

0 if ‖xi‖2 = 0
, xi represents the ith block of

the vector x.
(PG0) is hard to solve, so its convex relaxation is often

considered, which consists of finding a vector with the smallest
sum of the blocks `2-norm , i.e.,

(PG1)
min

∑m
i=1 ‖xi‖2

Subject to y = Ax (4)

In general, (3) and (4) are not the same. Several works have
provided conditions for strict equivalence between (PG0) and
(PG1). Those include the generalization of the RIP condition
[10], the Null Space Characterization of [18] and the gener-
alization of the Mutual Coherence [9]. In [2], a generalized
RSP (GRSP) is proposed for group sparse under-determined
systems, where a set of sufficient and necessary conditions for
a sparse vector x to be a solution to the problem of (4) are
proposed.

In this paper, we propose a weighted approach to address
the cases in which strict equivalence conditions may not be
satisfied. We show that by multiplying the sensing matrix with
a diagonal matrix W, we transform the problem into a problem
that satisfies the GRSP, and provide the conditions so that
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the transformed problem has the same support as the sparsest
block vector. By multiplying by the weighting matrix W, the
range space of A is rotated in such as way that solving (PG1)
favors the underlying block sparse vector.

The paper is organized as follow. In Section II, we discuss
the background theory that related to the proposed approach.
Section III introduced the proposed approach in noise free and
noisy observation cases, while Section IV provides conclusion
remarks.

II. BACKGROUND THEORY

The GRSP was proposed in [2]. The conditions for equiv-
alence between (PG0) and (PG1) are stated in the following
theorem.

Theorem 1 [2] Let xs represent a sparsest solution to (PG0).
xs is also a unique solution to problem (PG1) if and only if
there is a vector u∗ ∈ R(AT ) such that{

‖u∗i ‖2 = ‖ xsi
‖xsi‖2 ‖2 = 1 if ‖xsi‖2 > 0

‖u∗i ‖2 < 1 if ‖xsi‖2 = 0
(5)

where R(.) represents the range sapce of a matrix. A sufficient
condition for (6) to have a unique solution was also provided
in [2].

III. THE PROPOSED APPROACH

A. Noise Free Group Sparse Vectors

By substituting ti = ‖xi‖2, (PG1) can be recast as Second
Order Cone Program (SOCP), i.e., [10]

(PG2)

min
∑m
i=1 ti

Subject to ti ≥ ‖xi‖2
ti ≥ 0

y = Ax

(6)

One can see that the problems in (4) and (6) are equivalent
in the sense that the optimal solution for both problems is the
same. Suppose that the strict equivalence conditions for (PG0)
and (PG1) do not hold. Below, we show that by multiplying
the sensing matrix with a diagonal matrix W, we transform
the problem into a problem that satisfies the conditions in
Theorem 1. We provide a sufficient condition for the weighted
problem to satisfy the GRSP. In the following, S represents
the support of xs (i.e., the indices of the active groups), S̄ =
{1, 2, ...,m} | S the complement of S.

Theorem 2 If for the block sparsest solution xs it holds that
‖AT

S̄i
(AT

S )†uS‖2 < 1, for all i ∈ S̄, then xs is the solution
to the problem (4), where AS̄i, for i ∈ S̄, is the collection of
columns in A associated with non-active blocks in xs, AS is
the concatenation of the blocks in A that are associated with
active blocks in xs, u is a vector with uSi = xsi

‖xsi‖2 for i ∈ S,
and ‖uS̄i‖2 < 1 for i ∈ S̄ .

Proof: We will prove the contrapositive of this theorem,
i.e., we will show that if the GRSP conditions of Theorem 1
are not satisfied, then ‖AT

S̄i
(AT

S )†uS‖2 ≥ 1 for some i ∈ S̄.

Let ATv = u, and suppose that the first condition of (5) is
satisfied, but the second condition is not satisfied. Then we
have

uSi = AT
Siv ,∀i ∈ S (7)

∃i ∈ S̄ such that ‖AT
S̄iv‖2 ≥ 1 (8)

From (7), we have uS = AT
Sv. On solving for v, and

substituting the solution in (8), we get

‖AT
S̄i(A

T
S )†uS‖2 ≥ 1 for some i ∈ S̄ (9)

Revisiting the original problem in (3), we have

min
∑m
i=1 I(‖xi‖2)

Subject to y = Ax (10)

Let x = Wq, where W is a diagonal weight matrix with the
following structure, W = w ⊗ Ik×k, where w is a diagonal
matrix that contains the weights, ⊗ represents the Kronecker
product, Ik×k is the identity matrix with size k × k, with k
representing the group size. Based on its structure, W assigned
the same weight to all elements of a block. Then, (10) can be
rewritten as

min Σmi=1I(‖wiqi‖2)
subject to y = AWq

(11)

Since W is non-zero at the support of x, (11) can be rewritten
as

min Σmi=1I(‖qi‖2)
subject to y = AWq

(12)

The problem of (12) is NP-hard. Its convex relaxation can be
solved instead by replacing the indication function with the
sum of the active groups energies of q, i.e.,

min Σmi=1‖qi‖2
subject to y = AWq

(13)

Suppose that the block sparsest solution of (PG1) does not
satisfy the GRSP conditions in Theorem 1. We can manipulate
W such that the solution to (13) satisfies the condition on a
vector that has the same support of the sparsest block sparse
solution of (PG1).

To make the support of the solution of (12) coincide with
that of the sparsest vector x, we have to choose W such that

‖WS̄iA
T
S̄i(A

T
S )†WSuS‖2 < 1 ∀i /∈ S (14)

where WS̄i are the diagonal elements in W that associated
with i ∈ S̄, and WS is a diagonal matrix composed of
diagonal sub-matrices WSi for i ∈ S. It is easy to show that
by assigning high values to the wi that corresponds to active
groups, and low values to the wi that corresponds to non-
active groups, (14) is satisfied, and the support of the solution
of (13) is the same as the support of sparsest solution.
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B. The Noisy Case

In the case of noisy observations, we choose to minimize
the tradeoff between the sparsity of the solution and the fitting
error. The minimization problem can be written as

min hΣmi=1‖xi‖2 + ‖y −Ax‖2 (15)

By setting ti = ‖xi‖2, ∀i ∈ {1, 2, ...,m}, and v = y−Ax,
we can write (15) as

min hΣmi=1ti + ‖v‖2
subject to v = y −Ax

ti ≥ 0 ∀i ∈ {1, 2, ...,m}
ti ≥ ‖xi‖2 ∀i ∈ {1, 2, ...,m}

(16)

The dual of (16) is

max αT y
subject to ‖α‖2 ≤ 1

‖AT
i α‖2 ≤ λ2i

λ1 + λ2 = 1h
λ1 ≥ 0,λ2 ≥ 0

(17)

Now, we will provide the conditions for the sparsest block
sparse vector to be the solution to (15). Those conditions
are stated in the following theorem. In the following, we
will assume that the system in (15) has a unique solution,
and Slater’s and strict complementary slackness conditions are
satisfied.

Theorem 3 x∗ is a solution to the system: hΣmi=1‖xi‖2 +
‖y −Ax‖2 if and only if there is a u∗ ∈ R(AT ) such that

u∗ = ATα∗ = AT y−Ax∗

‖y−Ax∗‖2 , ‖y −Ax∗‖2 > 0,

‖AT
i α
∗‖2 = h iff ‖xi‖2 > 0

‖AT
i α
∗‖2 < h iff ‖xi‖2 = 0

(18)

Proof: First, we will prove the necessary condition, i.e.,
if x∗ is a solution to (15), then there is u ∈ R(AT ) such that

‖AT
i

y−Ax∗

‖y−Ax∗‖2 ‖2 = h when ‖xi‖2 > 0

‖AT
i

y−Ax∗

‖y−Ax∗‖2 ‖2 < h when ‖xi‖2 = 0
(19)

Now, consider the non-zero entries in (15). We have

huTx + ‖y −Ax‖2 (20)

Differentiating (20) with respect to x, and equating to zero,
we get

hui = AT
i

y −Ax∗

‖y −Ax∗‖2
(21)

which implies that

‖AT
i

y −Ax∗

‖y −Ax∗‖2
‖2 = h ∀i ∈ S (22)

For zero blocks in x∗, let t∗, v∗, and x∗ be the solution of
(16), and α∗, λ∗1 and λ∗2 be the solution for (17). From the
strict complementary property, we should have t∗i + λ∗1i > 0,

which implies λ∗1i > 0 when t∗i = ‖x∗i ‖2 = 0. From the
second and third constraints of (17), we have

‖AT
i α

∗‖2 < h ∀i ∈ S̄ (23)

From Slater’s condition, we have

hΣmi=1t
∗
i + ‖y −Ax∗‖2 = α∗T (Ax∗ + v∗) (24)

We can see that α∗ = y−Ax∗

‖y−Ax∗‖2 is a solution to (24), since it
satisfies (24) and the constraints in (17). So, indeed there is a
vector u∗ ∈ R(AT) such that it satisfies the conditions in (19).
Now, we will provide the proof for the sufficient condition, i.e.,
if there is a u∗ that satisfies the conditions in (19), then x∗

is the solution to (15). Assume that x̂ 6= x∗ is the solution to
(15), then we should have

hΣmi=1‖x̂i‖2 + ‖y −Ax̂‖2 < hΣmi=1‖x∗i ‖2 + ‖y −Ax∗‖2
(25)

From the necessary condition of this theorem, if x̂ is a solution
to (15), then there should be α̂ = y−Ax̂

‖y−Ax̂‖2 such that

‖AT
i α̂‖2 = h when ‖x̂i‖2 > 0

‖AT
i α̂‖2 < h when ‖x̂i‖2 = 0

(26)

Assume that α̂, λ̂1, and λ̂2 are the dual solution set. The dual
problem should attend its maximum at α̂, λ̂1, and λ̂2, i.e.,

α̂Ty > α∗Ty (27)

α̂TAx̂ + α̂T v̂ > α∗TAx∗ +α∗Tv∗ (28)

hΣmi=1‖x̂i‖2 + ‖y −Ax̂‖2 > hΣmi=1‖x∗i ‖2 + ‖y −Ax∗‖2
(29)

which contradict the first assumption, i.e., hΣmi=1‖x̂i‖2 +
‖y −Ax̂‖2 > hΣmi=1‖x∗i ‖2 + ‖y −Ax∗‖2
For the weighted problem, the problem can be restated as

hΣmi=1‖qi‖2 + ‖y −AWq‖2, (30)

where W = w ⊗ Ik×x. The conditions of Theorem 7 can be
easily modified to include the weights as follows{

‖wiAT
i α‖2 = h‖ qi

‖qi‖2 ‖2 = h ‖qi‖2 > 0

‖wiAT
i α‖2 < h ‖qi‖2 = 0

(31)

where wi is the ith element of w, which represents the weight
associated to ith block

Now, we will provide a theorem in which, if wi is less that
a specific value, the corresponding group will be non-active.

Theorem 4 For the problem in (30), if wi < h
2
√
λmax(AiAT

i )
,

then qi=0, where λmax(G) is the largest eigenvalue of the
matrix G.

Proof: According to the second condition in (31),
‖wiAT

i α‖2 < h when qi=0, which can be rewritten as

αT (AiA
T
i )α <

h2

w2
i

(32)
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We have αT (AiA
T
i )α ∈ [λmax, λmin], and the maximum

achievable value is λmax. On substituting λmax in the above
equation, we get

wi <
h

2

√
λmax(AiAT

i )
. (33)

We can see form Theorem 4 that assigning low values to the
weights that correspond to non-active blocks guarantees that
these blocks will be non-active in the estimated vector. For
instance, if we assign low values to wi that are associated to
the non-active blocks, such that (33) is satisfied for all non-
active blocks, and assign high values to wi that are associated
with active blocks, such that (33) is not satisfied, solving (15)
will retrieve a vector with the same support as the underlying
sparse vector. Since we do not know the real support of
the underlying block sparse vector, we propose to use a low
resolution estimate to reconstruct the weighting matrix.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed approach, we
test our approach on Synthetic Aparture Radar (SAR). To
simulate the block sparsity scenario, we consider the case in
which the target is composed of two adjacent pixels in the
scene. We adopt the system that was used in [3] to simulate
the sensing matrix A, and following the assumption that the
reflectivity of the targets does not depend on the observation
angle, the system can be described as a linear system of the
form y = Ax. The simulation parameters that were used to
construct the sensing matrix A are as shown in Table (1).

Table 1: Parameters Used in The Simulation
Center Freq. 200MHz
Pulse Width 2.5 ×10−7

Bandwidth 5 MHz
∆θ 1o

The ground patch used in the simulation is 40 m wide and
60 m long, and the scene is uniformly sampled on a grid
with spacing 0.5 m. The distance between the antenna and the
ground patch center is 1050 m. The diagonal weighting matrix
W that is used in the proposed approach is constructed by
assigning to the diagonal of W a low resolutio estimate based
on Spatial Frequency Interpolation [17]. Fig. 1-(a) shows two
targets inside the scene of interest, while Fig. 1-(b) shows the
spatial frequency interpolation. It is clear from 1-(b) that the
frequency spatial interpolation provides a rough estimate of
the targets locations. Fig. 1-(c) shows the estimated targets
using the estimation in Fig. 1-(b) as a weighting matrix in
the proposed approach, while Fig. 1-(d) shows the estimation
of the non-weighted approach. One can see from Fig. 1-(c)
and 1-(d) that the non-weighted approach fails to estimate
the actual targets, while the weighted approach estimates the
targets locations correctly.

Next, we conduct Monte Carlo simulations to test the
performance of the weighed approach as compared to the non-
weighted approach for noise free and additive white Gaussian

noise. 100 Monte Carlo trials are performed. In each trial,
n block sources are randomly distributed around the scene,
and a low resolution estimate (w) is constructed based on
the estimation result of spatial frequency interpolation to be
used in the weighing approach. The performance metric is
the success rate; we claim success when the indices of the n
largest blocks of the estimated source coincide with the actual
group indices of the actual vector.

Fig. 2 shows the performance of the proposed approach
versus the non-weighted approach with the increase of the
number of active blocks in the actual source, and block size
of 3. One can see that the non-weighted approach degrades
rapidly with the increase of the number of active blocks, while
the proposed approach shows significantly better performance.
Fig. 3 shows the performance of the proposed approach and
that of the non-weighted approach for different SNRs, and
block size of 2. One can see that the non-weighted approach
performance is poor even at high SNR, while the proposed
approach shows good performance for SNR above 5 dB.

V. CONCLUSIONS

In this paper, a weighted approach has been proposed to
solve for the block sparsest vector in scenarios when the
strict equivalence conditions may not hold. Simulation results
have shown improved performance as compared to the non-
weighted approach.
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Fig. 1. a) The actual sourced for n=2, b) The estimation that is used to construct the weights, c) The estimated sources via the weighted approach, d) The
estimated sources of the non-weighted approach.
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