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Abstract— Cracks are among the most commonly found road 

surface degradations, requiring periodical road surveys for 

monitoring pavement quality. Images of road pavement surface 

can be automatically processed, typically employing 

segmentation algorithms to identify cracks. However, a set of 

distinct connected components often result, leading to the 

detection of several independent crack segments, although they 

may belong to the same pavement surface defect. This is often 

observed for cracks that exhibit a longer linear development or 

present several branches. This paper presents a new strategy to 

identify cracks on images captured during road pavement 

surveys, even when those cracks appear with a complex shape. 

The proposed crack segmentation algorithm includes two stages: 

(i) selection of prominent “crack seeds”, adopting an efficient 

segmentation procedure, after appropriate image smoothing, 

minimizing the detection of false positives; (ii) iterative binary 

pixel classification, into the crack or non-crack classes, extending 

the “seeds” to identify the complete crack shape. The paper also 

tests the combination of the proposed two stage crack 

segmentation with three smoothing techniques, to evaluate their 

suitability for crack detection. As a final step the system classifies 

the identified cracks as longitudinal, transversal or miscellaneous 

types. Tests performed with images acquired from different types 

of sensors (active and non-active), show improved crack 

segmentation results. 

Keywords—Crack detection; Road surface; Segmentation; 

Pattern Recognition; Image Processing 

I.  INTRODUCTION 

Periodic road pavement surveys are among the most 
important tools used to collect data for planning and scheduling 
maintenance and repair actions. Cracks are the most common 
defects found on images acquired during such surveys. 
Cracking appears in pavement surfaces mainly due to fatigue 
of the asphaltic (top) pavement layers, but also caused by 
adverse atmospheric conditions, that may cause shrinkage of 
materials, or to construction problems motivated by a bad 
quality of the asphaltic mixtures or by weaknesses in the 
structural pavement resistance. Technicians and engineers 
dealing with road surface maintenance do not share a single 
definition of what a crack means. Its definition can be slightly 
different in different countries, or when working with different 
pavement types. One relevant definition was proposed by the 
American Association of State Highway and Transportation 
Officials (AASHTO) [1]: “A crack is a discontinuity in the 
pavement surface with minimum dimensions of 1 mm width 
and 25 mm length”. Other definitions refer the expected 
geometric characteristics of cracks, although not providing 

quantification information. For instance, the definition by the 
World Road Association [2] is: “A crack is a discontinuity in 
the road surface that has a minimum length, width and depth”. 

For the purpose of this paper, it is important to recall that in 
early development stages, small cracks may appear isolated, or 
as a series of interconnected components, while in later stages 
they appear connected and with a higher density pattern. 
Therefore, this paper proposes that the definition of a crack 
encompasses its lifecycle, being an observable discontinuity in 
the road surface, whose width and length are sufficient to 
distinguish it from spurious non-uniformities of the top layer or 
stains in the pavement, caused by oil or other materials, and 
that if several such discontinuities are close together and 
present a similar aspect and orientation, then they should be 
considered as belonging to the same crack. 

One of the most challenging tasks when applying automatic 
crack detection and characterization systems is the 
identification of narrow and short sections of cracks, especially 
in cases where these cracks exhibit highly variable shapes, for 
instance including several crack branches of highly variable 
widths along their development. Minimal path based methods, 
Markovian modelling with geometric constrains and Free Form 
Anisotropy algorithms have been used to solve the detection of 
cracks with a complex shape [3]. Short discontinuities in cracks 
occur often, so automatic detection algorithms should decide 
whether to label them as independent cracks, or as belonging to 
the same pavement crack, linking them together. 

This paper proposes a novel crack segmentation algorithm, 
based on a set of iterative statistical tests, able to link together 
narrow and short sections of cracks that are typically identified 
as separate connected components. After an identification of 
cracks seeds, by applying an efficient crack segmentation 
method [4], two simple statistical features are computed: (i) the 
standardization of pixel intensities (z-score) belonging to the 
set of crack seeds; (ii) the z-score of non-crack pixel intensities. 
An iterative procedure is then followed, that can relabel some 
of the originally non-crack pixels as additional crack pixels, if 
they can be modelled by the corresponding distribution and are 
neighbors of existing crack pixels. The algorithm iterates, 
updating the z-score distributions, until the automatically 
determined stopping criteria, detailed in Section II, is met. 

The proposed crack detection system initially pre-processes 
the images, testing three different smoothing algorithms, and 
then performs crack segmentation. Finally cracks are classified 
according to their orientation as either longitudinal, transversal 
or miscellaneous [5]. 
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The paper is organized as follows: section II describes the 
proposed crack segmentation algorithm, able to identify cracks 
with complex shapes, section III presents experimental results 
for road flexible pavement images acquired with different types 
of sensors, and section IV concludes the paper and presents 
hints for future work. 

II. SYSTEM ARCHITECTURE 

The architecture of the proposed crack segmentation 
algorithm is presented in Figure 1. When dealing with road 
images it is important to reduce the intensity variance of pixels 
belonging to the healthy pavement areas (image background), 
without affecting the intensity of those pixels affected by 
cracks – this is the goal of the pre-processing stage. The next 
stage is the identification of a set of crack segments (the “crack 
seeds”), trying to minimize the inclusion of false positives. 
Then, the novel crack segmentation refinement is presented, to 
obtain an improved identification of cracks, even when they 
present multiple branches. Finally, a type classification can be 
assigned to each identified crack. 

 
Fig. 1. Architecture of proposed crack segmentation algorithm. 

A. Pre-processing 

This paper confronts three different pavement surface 
image pre-processing strategies: (i) anisotropic diffusion; 
(ii) wavelet denoising; (iii) morphological filtering. Each of 
these is briefly discussed in the following, all of them aiming to 
smooth the input images and enable a better crack 
segmentation performance. 

Pre-processing using anisotropic diffusion follows the 
algorithm of Perona and Malik [6]. The variables to be set for 
this algorithm are: (i) number of iterations, it; (ii) conduction 
coefficient, cc, where for low values of cc small intensity 
gradients are able to block conduction and hence diffusion 
across step edges, while higher cc values reduce the influence 
of intensity gradients on conduction; (iii) diffusion speed, λ, a 
constant taking values in the range 0 to 0.25, as suggested in 
[6]. Experimentation was conducted on road pavement surface 
images, varying it from 1 to 12 and cc from 20 to 100, with 
step 10, for the maximum diffusion speed (λ = 0.25) since the 
objective is to efficiently reduce the variance of pixel 

intensities. The best results, in view of the subsequent crack 
segmentation stages, were obtained with an anisotropic 
diffusion model that favors wide regions, using it = 4 and 
cc = 60. These results show a considerable pixel intensity 
variance reduction, without significantly deteriorating the 
crack information, as reported in [4]. 

Pre-processing with the stationary wavelet transform uses 
the Symlet decomposition filters (SWT). This technique aims 
to reduce the unwanted random texture found in non-crack 
regions, while trying to keep the regions with cracks well 
defined. The implementation proposed in [7] is adopted, using 
a fourth order Symlet decomposition filter, with four level 
decomposition and hard thresholding, empirically adjusted 
after exhaustive testing, to achieve a good compromise 
between smoothing and computational time. 

The third pre-processing strategy applies a combination of 
the morphological erosion and opening operations [8], 
according to equation (1):  

ISmoothed = IEroded ⊚ se =  

= (I ⊖ se) ⊚ se = [(I ⊖ se) ⊖ se] ⊕ se  (1) 

where I is the original image, ⊚ represents the 
morphological opening operator, the symbols ⊖ and ⊕ stand 
for the erosion and dilation operators, respectively. For road 
pavement surface images, this morphological filtering reduces 
pixel intensity variance in non-crack areas, while making crack 
regions appear more pronounced since its application results in 
a thickening of darker image regions. 

Results of applying the three pre-processing strategies to 
two sample images are included in Figure 2. It can be observed 
that all pre-processing strategies are able to significantly reduce 
pixel intensity variance, without deteriorating the crack 
information. The intensity difference between crack and non-
crack pixels is increased, and consequently the same happens 
to the separability of the two classes considered, thus easing the 
subsequent segmentation and reducing the number of false 
positive detections. These results seem to slightly favor the 
wavelet pre-processing, as it better maintains the original 
average intensity values and maximizes the crack pixel 
separation. Nevertheless, even the simpler morphological 
filtering, with a disk-shape structuring element of 3 pixel 
radius, is able to provide desired smoothing results, to be 
considered as input to a segmentation algorithm. 

B. Initial Crack Segmentation 

The goal of the second stage of the proposed system is to 
identify a set of crack seeds. This initial crack segmentation is 
obtained by thresholding the histogram of smoothed image 
intensities, according to the algorithm presented in [4]. This 
algorithm fits a Gaussian function to the histogram and selects 
the segmentation threshold as the intensity value presenting a 
statistical significance level of 5% (Ith0.05), i.e, the threshold 

value will be   1.96 , where  and  are, respectively, the 
mean and standard deviation parameters of the Gaussian. 

For the proposed system false positives are to be avoided at 
this stage, so the selected crack seeds should additionally 
respect two rules: (i) the width of each connected component 
(cc) should be equal to or greater than w; (ii) the length of the 
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ellipse’s major axis, fitted to each cc, should be greater that lg. 
To choose values for these parameters, the 44 pavement 
surface images without cracks, available from both image 
datasets tested (see details in Section III), are considered, to 
understand the distribution of the false positive cracks detected. 
The histograms for the w and lg parameters observed in the 
false positive cracks are shown in Figure 3. The rule parameter 
values selected are: w = 2 mm, for cc width, and lg = 25 mm, 
for the ellipsis major axis length. 

 

 

  

  

  

  
Fig. 2. Sample pre-processing results: sample images (top row); original 

intensities (2nd row); anisotropic difusion (3rd row); wavelet denoising 

(4th row); morphological filtering (bottom row). 

C. Crack Segmentation Refinement 

The novel crack segmentation refinement algorithm takes as 

input the set of initial crack seeds, which is expected not to 

contain many connected components falsely labeled as cracks. 

Its architecture is shown in Fig. 4. The goal is to link together 

narrow and short crack sections that may have been identified 

as separate connected components. For this, the crack seeds 

are extended by relabeling non-crack pixels, in the vicinity of 

crack connected components, which share the same statistical 

properties as those already known to belong to the cracks 

class. 

  

  
Fig. 3. Histograms of widths (w in mm) and lengths (lg in mm) of connected 

components of the initial segmentation found in both image databases: 

ImgSet1 (left), ImgSet2 (right). 

 
Fig. 4. Crack segmentation refinement algorithm. 

The segmentation refinement starts by the computation of 
the two z-score histograms, for the normalized intensity values 
of pixels from the crack and the non-crack classes. An iterative 
procedure is then followed, relabeling some of the originally 
non-crack pixels as additional crack pixels if they can be 
modelled by the corresponding distribution. All non-crack 
pixels with intensities presenting a statistical significance lower 
than 5% when considering the z-score for the non-crack class, 
and simultaneously a statistical significance higher than 5% 
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when considering the crack class z-score, and at the same time 
are neighbors of an existing crack seed, have their class labels 
changed to “crack”. The procedure is iterated, computing new 
histograms for the updated crack and non-crack classes. 

The iterative process stops when the rate of pixels classified 
as crack (Rc), before and after each iteration, defined in 
equation (2), exceeds an empirically set threshold of 5%: 

Rc = (Ni – Ni-1) / Ni-1   (2) 

where Ni and Ni-1 are the number of crack pixels after the 
present and the previous iterations, respectively. 

Segmentation results for a sample image detail are included 
in Figure 5, showing an initial set of three crack segments 
(left), which were aggregated into a single crack segment, by 
the proposed crack segmentation refinement algorithm (right). 

  

  
Fig. 5. Sample crack segmentation results: initial crack seeds (left) and after 

crack segmentation refinement (right). 

III. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed crack 
segmentation algorithm, two different datasets were 
considered. The first, ImgSet1, is a dataset acquired with a 
photographic camera during a visual pavement surface survey 
of a Portuguese road, including 56 gray level images of size 

15362048 pixels, which is publicly available at 
http://amalia.img.lx.it.pt/CrackIT/. This dataset includes 8 
images without any type of road pavement surface distress. The 
second dataset, ImgSet2, was acquired by the laser road 
imaging system LRIS [9], during a survey of a Canadian road, 

including 166 images of size 40962048. This dataset includes 
36 images not containing cracks. For both datasets the images 
were acquired with each pixel corresponding to approximately 
1 mm

2
 of the road pavement. 

To overcome the difficulties in creating a pixel-based 
segmentation ground-truth (maybe not an achievable task), a 
block-based ground truth data was considered, where a human 

expert manually labelled 7575 pixel image blocks with 
cracks, by selecting them over the original road pavement 
surface image. A quantitative evaluation of crack segmentation 
results can be computed using this information. Additionally, a 
qualitatively evaluation is also considered, by evaluating the 
crack type classification results, using the approach developed 
in [5], which takes as input the crack segmentation results . 

The proposed crack segmentation algorithm was 
implemented using Matlab 2016b, set up for parallel 
processing with a pool of 4 workers, using a Toshiba Qosmio 
X-70-B-10T with an Intel Core i7-4720 HQ CPU and 16Gb of 
RAM, with pre-installed Windows 10 operating system. 

Figure 6 presents sample crack segmentation results, for 
details containing cracks of three images selected from both 
datasets (see top row). Tests consider the three preprocessing 
strategies: (i) anisotropic diffusion favoring wide regions, with 
it = 4 and cc = 60 (see 2

nd
 and 3

rd
 rows); (ii) stationary wavelet 

transform with fourth order Symlet decomposition filters (see 
4

th
 and 5

th
 rows); (iii) morphological filtering with a 3 pixel 

radius disk-shaped structuring element (see 6
th
 and 7

th
 rows). 

   

   

   

   

   

   

   
Fig. 6. Sample crack segmentation results. Each pair of rows shows the crack 

seeds (upper row) and the crack segmentation refinement (lower row). 
Results for the three processing techniques are included: anisotropic 

diffusion (top), wavelet transform (middle) and morphological filtering 

(bottom). 

Looking into the results presented in Figure 6, the binary 
images corresponding to each pre-processing strategy include 
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the crack seeds (upper row) and the crack segmentation 
refinement result (lower row). When using the anisotropic 
diffusion pre-processing, the initial 10, 9, and 10 connected 
components (crack seeds), were merged among themselves to 
result in 4, 6, and 7 connected components, after 6, 6 and 4 
iterations, respectively for the left, middle and right columns. 
When considering the stationary wavelet transform pre-
processing, the initial number of crack seed connected 
components were 4, 9 and 11, being reduced to 4, 7 and 6 crack 
segments, after a number of 4, 4, and 5 iterations, respectively. 
Results for the morphological filtering pre-processing strategy 
show an initial number of 12, 7 and 5 crack seed connected 
components, reduced to 5, 6 and 3 crack segments, after a 
number of 6, 7 and 3 iterations, respectively. 

A visual analysis of the obtained results allows concluding 
that images processed using the anisotropic diffusion originates 
thicker connected components in comparison to the other two 
pre-processing techniques, resulting in a lower number of 
crack seed connected components. The stationary wavelet 
transform tends to originate larger gaps between crack seed 
components, while the morphological filtering pre-processing 
seems to perform well, not thickening too much the crack seed 
segments. The results after applying the proposed crack 
segmentation refinement show that many of the gaps existing 
between the crack seeds are properly filled. 

The quantitative results achieved using the block-based 
ground truth, based on the recall metric (ratio between the 
number of blocks correctly classified as cracks and the total 
number of ground truth crack blocks) was: 88,2%, 90.2%, and 
94.3% for ImgSet1; and 85.3%, 91.3, 93.4% for ImgSet2, in 
relation to the anisotropic diffusion, wavelet and morphological 
smoothing techniques, respectively. Analyzing the results for 
all images of both image datasets, the number of iterations 
ranged from 2 to 12, while the computational time ranged from 
11 to 23 seconds for the entire processing of each image. 

TABLE I.  CRACK TYPE CHARACTERIZATION RESULTS USING THE PROPOSED 

MORPHOLOGICAL PRE-PROCESSING. 

Dataset Classification type 
Crack Types 

Long. Transv. Misc. 

ImgSet1 

Ground Truth 50 5 17 

Manually labelled and 
detected by the system 

50 5 17 

Not manually labelled but 
detected by the system 

4 2 3 

ImgSet2 

Ground Truth 125 12 43 

Manually labelled and 
detected by the system 

125 12 43 

Not manually labelled but 
detected by the system 

11 2 6 

Although quantitative results are similar to those published in 

[4], the proposed segmentation was able to include small 

regions labelled as cracks in the neighborhood of ground truth 

crack blocks, which were not manually labelled as crack 

blocks since the number of crack pixels they included was 

low. Notice that all cracks manually labeled as cracks were 

correctly labeled by the proposed strategy, as can be seen in 

Table I, corresponding to a 100% recall. The blocks not 

manually labeled by the human expert as containing cracks, 

but detected by the proposed system, were visually confirmed 

to contain short and thin crack segments added by the 

improved segmentation algorithm proposed. They correspond 

to additional pavement surface areas in the images that should 

be kept under observation when performing further road 

pavement surface inspections or planning maintenance and 

repair actions. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper proposed a novel crack segmentation refinement 
algorithm, which is able to follow complex cracks including 
several thin branches or presenting a long linear development. 
The system performs well with the three different pre-
processing strategies tested, eventually favoring the simple 
morphological filtering. Both quantitative and qualitative 
performance evaluations indicate improved segmentation 
results. 

Future work includes: (i) testing the proposed algorithm in 
images with cracks tangled by shadows; (ii) consider an 
alternative automatic stop criterion, by analyzing the evolution 
of the derivative of the rate of pixels classified as cracks (Rc); 
(iii) exploitation of Compute Unified Device Architecture 
(CUDA) based GPUs, to reduce the processing time. 
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