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Abstract—Linear structural equation models (SEMs) have
been very successful in identifying the topology of complex
graphs, such as those representing social and brain networks.
In many cases however, the presence of highly correlated nodes
hinders performance of the available SEM estimators that rely
on the least-absolute shrinkage and selection operator (LASSO).
To this end, an elastic net based SEM is put forth, to infer
causal relations between nodes belonging to networks, in the
presence of highly correlated data. An efficient algorithm based
on the alternating direction method of multipliers (ADMM) is
developed, and preliminary tests on synthetic as well as real
data demonstrate the effectiveness of the proposed approach.

Index Terms—Networks, Topology inference, Structural Equa-
tion Models, Elastic Net

I. INTRODUCTION

Networks have ubiquitous presence in a plethora of disci-
plines such as sociology, communications and machine learn-
ing among others, where their ability to model a multitude of
complex systems [18] has rendered them indispensable. These
complex systems may include naturally emerging networks,
such as social and communication or power networks, or
model-induced ones, employed to simplify the representation
of a system, such as brain networks [22]. Given a graph
representation of a network, various tools from graph theory
and network science [18] can be employed to draw inferences
from nodal variable dependencies. Examples of such infer-
ences include behavioral prediction of complex systems [13],
and detection of communities over social or brain graphs [4],
among others. In addition, many machine learning [2] and
signal processing [23] tasks can be performed over a graph.
All these tasks, however, presume knowledge of the network
graph representation. While this information may be naturally
available in some networks, such as power or communication
networks, in many cases, such as brain networks, it has to be
inferred.

Network topology inference aims to discover the (typically
sparse) connectivity between nodes, given only nodal mea-
surements, and thus has practical implications in a multitude
of settings. Examples of such applications include discovery
of causal links between brain regions, or identifying how
contagions spread [1].
Prior works. Several approaches have been proposed for
inferring the topology of networks. Probabilistic models rely
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on maximum likelihood estimation to obtain edge weights [8],
[17], [19]. Structural equation models (SEMs) are simple
yet capable of capturing causal relationships [11]. The basic
premise of a SEM is that a node measurement depends linearly
on those of its neighbors, plus possibly an additive exogenous
input. Linear SEMs have wide applicability in fields as diverse
as sociology [7], psychometrics [16] and genetics [3], and have
recently been employed to track dynamic topologies of social
networks [1], by leveraging the typically sparse connectivity of
a network. In addition, nonlinear SEMs have been advocated
to model nonlinear phenomena [9], [12], [14], and also for cap-
turing nonlinear connectivity between pairs of nodes [20], [21].
All aforementioned approaches, however, employ LASSO [10]
type solvers, which tend to ignore multiple edges that arise
when data are highly correlated.

The aim of the present work is to introduce a novel method
that enables topology inference of networks by employing an
elastic net [24] solver, that performs well even in scenarios
where some of the data are highly correlated. In addition, even
when data are not highly correlated, the proposed elastic net
SEM performs at least as well as the regular LASSO solver.
Notation. Boldface uppercase (lowercase) letters indicate ma-
trices (column vectors). The vector containing the diagonal el-
ements of a matrix is denoted by diag(·), while 0 and 1 denote
the all-zeros and all-ones vectors, respectively. Calligraphic
uppercase letters denote sets, and |A| represents the cardinality
of A. Operators ‖ · ‖2 and ‖ · ‖1 stand for the L2- and L1-
norms of a vector, respectively, (·)� denotes vector and matrix
transposition, and tr(·) denotes the trace of a matrix. The
matrix operator ‖·‖0 denotes the number of nonzero entries of
its argument, while Bdiag{X,Y,Z} denotes a block-diagonal
matrix, with the matrices X,Y and Z in its diagonal.

II. NETWORK MODEL AND PROBLEM STATEMENT

Consider a network consisting of N nodes be modeled as
a graph G(V , E), where V is the set of vertices/nodes, with
|V| = N , and E is the set of edges between nodes. This graph
can be further described using a binary N × N adjacency
matrix A whose (i, j)-th entry is given by

αij

{
�= 0 if (i, j) ∈ E

= 0 otherwise;
(1)

hence, αij is nonzero if there exists a directed edge between
nodes i and j. Accordingly, weights assigned to edges can be
captured by an N ×N matrix W.
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Fig. 1. Example of possible network topology and its connection with
structural equation models [20].

Consider now a process observed over the entire network,
with yim denoting the m-th observation at node i. A linear
SEM [1], [3] obeys the relationship

yim =
∑
j �=i

αijyjm + biixim + εim (2)

where the m-th observation at node i depends linearly on
the corresponding endogenous observations of the neighboring
nodes of i, with the addition of a possible exogenous variable
xim. Here, εim captures unmodeled dynamics, such as noise.
An example of such a model is shown in Fig. 1.

Upon defining the M × 1 vectors yi := [yi1, . . . , yiM ]�,
xi := [xi1, . . . , xiM ]�, the N × 1 vector b =
[b11, b22, . . . , bNN ]�, and the M × N matrices Y :=
[y1, . . . ,yN ], X := [x1, . . . ,xN ], (2) can be cast into matrix
form

Y = YA+XB+E (3)

where B is an N ×N diagonal matrix with b as its diagonal,
and E collects all the noise variables.

Given nodal measurements across the entire network, Y,
and exogenous inputs X the task of topology inference is
to find the unknown adjacency matrix A of the underlying
network. Note that typical connectivity of real-world networks
is sparse, as nodes usually connect to few other nodes, thus
the adjacency matrix A is expected to be sparse.

III. TOPOLOGY INFERENCE ALGORITHM

Having established the network model, we next consider
estimating the wanted adjacency matrices in the noisy SEM
of (3). In order to estimate the unknowns in (3), or (2),
the following sparsity promoting optimization problem is
proposed:

min
A,B

1

2
‖Y −YA−XB‖2F + λ1‖A‖1 +

λ2

2
‖A‖2F

subject to diag(A) = 0

(4)

where the constraint diag(A) = 0 ensures that there are no
self-loops, λ1 and λ2 are regularization scalars for the L1

and Frobenius norms, and ‖ · ‖1 denotes the L1-norm of the
vectorized matrix. Also, note that the objective function in
(4) is convex. The following proposition justifies the use of
the elastic net penalty, the weighted sum of L1 and L2 norms,

instead of just using the sparsity promoting L1 norm, typically
employed in LASSO.

Proposition 1 ( [24]). Suppose that the nodal measurements
{yi} have unit norm. Let a∗ := [a∗

1
, . . . , a∗N ]� be the optimal

solution to the following optimization problem

f(a) =
1

2
‖z −Ya‖2

2
+ λ1‖a‖1 +

λ2

2
‖a‖2

2
(5)

and suppose a∗i a
∗
j > 0. With ψij := y�

i yj it then holds that

|a∗i − a∗j | ≤

√
2(1− ψij)

λ2

‖z‖2 (6)

Proof: Since a∗ is the minimizer of (5) it holds that

f(a∗) ≤ f(0) ⇒ ‖z −Ya∗‖2 ≤ ‖z‖2. (7)

In addition the gradient of f at a∗ will vanish, that is

−Y
� (z −Ya∗) + λ1∂‖a

∗‖1 + λ2a
∗ = 0. (8)

Now consider the i-th and j-th rows of (8)

−y�
i (z −Ya∗) + λ1sign(a∗i ) + λ2a

∗
i = 0 (9)

−y�
j (z −Ya∗) + λ1sign(a∗j ) + λ2a

∗
j = 0. (10)

Subtracting (10) from (9) yields

λ2(a
∗
i − a∗j ) = (yi − yj)

�
(z −Ya∗) (11)

Taking the norm of both sides and invoking the Cauchy-
Schwarz inequality

|a∗i − a∗j | ≤

√
2(1− ψij)

λ2

‖z −Ya∗‖2 ≤

√
2(1− ψij)

λ2

‖z‖2

(12)

where the last inequality follows from (7).
Proposition 1 suggests that when two nodal measurements

are highly correlated, the elastic net solver will likely have
these two nodes connected to the same set of other nodes.
This is in contrast to LASSO [10] solvers for (3), where in the
presence of highly correlated data, the L1 norm regularization
promotes only one connection.

Note that if λ2 = 0 then (4) reduces to the SEM obtained
via LASSO [1]. In order to solve (4), the alternating direc-
tion method of multipliers (ADMM [6]) will be employed.
Consider the auxiliary variables C and D, and re-write (4) as

min
A,C,B,D

1

2
‖Y −YA−XB‖2F + λ1‖C‖1 +

λ2

2
‖A‖2F

subject to diag(C) = 0, A = C, B = D (13)

Note that, here D is a diagonal matrix. The augmented
Lagrangian of (13) is then

L =
1

2
‖Y −YA−XB‖2F + λ1‖C‖1 +

λ2

2
‖A‖2F+

tr
(
U

�
1
(A−C+ diag(C))

)
+

ρ

2
‖A−C+ diag(C)‖2F+

tr(U�
2
(B−D)) +

ρ

2
‖B−D‖2F (14)
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Algorithm 1 Elastic Net SEM Topology Inference
Input: Nodal measurements Y; Exogenous inputs X; param-

eters {λ1, λ2, ρ}
Output: Estimate of network adjacency matrix A

1: Initialize all variables to 0.
2: while Not converged do
3: Update A using (15).
4: Update B using (16).
5: Update auxiliary variable C using (17).
6: Update auxiliary variable D using (19).
7: Update Lagrange multipliers using (20)
8: end while

where U1 and U2 denote Lagrange multipliers, while ρ is a
positive scalar. Henceforth, matrix superscripts denote ADMM
iteration indices. The update for A can be obtained by taking
the derivative of L with respect to (w.r.t.) A and equating it
to zero
∂L

∂A
= 0 ⇒ (15)

(KY + (λ2 + ρ)I)Ai = KY −KY,XB−U
i−1

1
+ ρCi−1.

Here I is the identity matrix of appropriate dimension, and
KY,X denotes the inner product matrix between the columns
of Y and X, that is KY,X := Y

�
X. Also, let by definition

KY := KY,Y . The update for B can be obtained in a similar
manner

∂L

∂B
= 0 ⇒ (16)

(KX + ρI)Bi = KX,Y (I−A
i)−U

i−1

2
+ ρDi−1.

Accordingly, the update for the C is given by

J = Tλ1/ρ

(
A

i +
1

ρ
U

i−1

1

)
⇒

C
i = J− diag(J)

(17)

where Tκ(·) denotes the elementwise soft-thresholding opera-
tor defined as

Tκ(x) :=

⎧⎪⎨
⎪⎩
x− κ , x > κ

0 , |x| ≤ κ

x+ κ , x < −κ.

(18)

The diagonal entries of D are updated as follows

d =
1

ρ
diag(Ui−1

2
) + diag(Bi) ⇒

D
i =

⎡
⎢⎢⎢⎣

d1
d2

. . .
dN

⎤
⎥⎥⎥⎦ (19)

where dk is the k-th entry of d. Finally, the Lagrange multi-
pliers are updated as

U
i
1
= U

i−1

1
+ ρ

(
A

i −C
i
)

U
i
2
= U

i−1

2
+ ρ

(
B

i −D
i
)
.

(20)

The steps of our topology inference algorithm are listed in
Alg. 1. Since (4) is convex, this ADMM procedure will con-
verge in a finite number of iterations. The update complexity
of A and B is O(N3), while the update complexity of the
auxiliary variables C and D is O(N2) and O(N) respec-
tively. This brings the overall complexity of the algorithm to
O(I(N3 + N2 + N)), where I is the number of required
ADMM iterations until convergence.

Remark 1. The proposed ADMM solver for the Elastic Net
SEM, can also solve LASSO SEM’s by setting λ2 = 0.

Remark 2. All the variable updates are separable per node,
i.e. each column of A can be updated separately, which lends it
self naturally to a distributed implementation of the algorithm;
see also [6].

Remark 3. The present topology identification approach can
be extended to cope with dynamically changing networks, by
employing an exponentially weighted least-squares cost in (4),
along the lines of [1].

IV. NUMERICAL TESTS

The proposed scheme is validated in this section using
synthetic and real data. In all tests Elastic Net SEM is
compared to LASSO SEM [1], both implemented using the
ADMM algorithm outlined in Section III. An edge is declared
present if α̂ij ≥ 10−1. Given the support S of the ground truth
adjacency matrix A with entries

[S]ij =

{
1, if aij �= 0

0, otherwise

and the support Ŝ of estimated adjacency matrix Â with
entries,

[Ŝ]ij =

{
1, if âij ≥ 10−1

0, otherwise

the metric evaluated is the edge identification error rate (EIER)
given by

EIER =
‖S− Ŝ‖0
N(N − 1)

× 100%.

The software employed to conduct all experiments is MAT-
LAB [15]. All results represent averages over 10 independent
Monte Carlo runs. In all experiments the ADMM parameter
ρ is set to 10.

A. Synthetic data

A synthetic network with L = 4 non-overlapping commu-
nities and N =

∑L
�=1

N� is generated. Here, N� denotes
the number of nodes in the 	-th community, which were
set as N� = {4, 8, 16, 32}. The connectivity pattern in each
community is generated based on the following seed matrix

S0 =

⎡
⎢⎢⎣

0 1 0 0
1 0 1 0
1 0 0 1
0 0 1 0

⎤
⎥⎥⎦ . (21)
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The adjacency matrix in each community is generated as
[A�]ij ∼ Bernoulli(0.9[S�]ij), where S� = S0 ⊗ 1�×1, and ⊗
denotes the Kronecker product. The overall adjacency matrix
of the network is then defined as A = Bdiag{A1, . . . ,AL},
while the matrix of exogenous effects is set as B = I. The
number of observations per node is M = 54. For the nodes
in each community, the N� × M exogenous variable matrix
X� was generated as X� = X̄� ⊗ 1�×1, with each entry
of X̄� drawn from a standardized normal distribution. The
exogenous variable matrix for the entire network is formed
as X = [X�

1
, . . . ,X�

L ]
�. Setting σε = 0.01, noise terms

were sampled independently as εit ∼ N (0, σ2

ε ). Finally, the
measurement matrices were generated based on the linear
SEM of (3) as Y = (I−A)−1(BX+E).

The Elastic Net SEM parameters are λ1 = 0.005, λ2 = 0.1,
while for LASSO SEM λ = 0.005. Fig. 2a shows the heatmap
of the ground truth adjacency matrix A for one instance of
this network. For the same instance, Figs. 2b and 2c depict the
estimated adjacency matrices for Elastic Net SEM and LASSO
SEM, respectively. Results for this network are listed in Tab. I.
Clearly, Elastic Net SEM is able to identify more edges in this
scenario, while LASSO SEM performs worse. As the data are
generated to be highly correlated, this experiment showcases
the shortcomings of the LASSO solver for SEM [1] compared
to the Elastic Net. Indeed, LASSO SEM tends to ignore many
edges that correspond to highly correlated data.

Algorithm Average EIER
Elastic Net SEM 5.3056

SEM 9.0833

TABLE I
AVERAGE NUMBER OF MISIDENTIFIED EDGES FOR ELASTIC NET SEM

AND SEM FOR A SYNTHETIC NETWORK.

B. Real data

Further tests were conducted based on real gene regulatory
network data [3]. Nodes in this networks represent 39 immune-
related genes, while the measurements consist of gene expres-
sion data from 69 unrelated Nigerian individuals [5]. The gene
expression levels were treated as endogenous inputs, while
genotypes of the genes involved were considered as the ex-
ogenous inputs. Note that, in this scenario, there is no ground-
truth adjacency matrix, thus only Elastic Net SEM and LASSO
SEM are compared. Fig. 3 shows the results for this dataset.
The parameters for this experiment were λ1 = 600, λ2 = 600
for Elastic Net SEM, and λ = 600 for LASSO SEM. While
both algorithms provide similar adjacency matrices, note that
Elastic Net SEM is able to identify two more edges than SEM.
This could possibly facilitate the discovery of novel causal
patterns, that may not be captured by LASSO-based SEM.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach for network topol-
ogy inference, termed Elastic Net SEM, which is based on lin-
ear structural equation models. The proposed method exploits
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(a) Ground truth super-adjacency
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(c) Estimated super-adjacency matrix
using SEM

Fig. 2. Heatmaps of adjacency matrices for a 4-community synthetic network.
White (black) squares indicate the presence (absence) of an edge.
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(a) Estimated adjacency matrix using
Elastic Net SEM
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(b) Estimated adjacency matrix us-
ing SEM

Fig. 3. Heatmaps of adjacency matrices for the gene regulatory network,
with N = 39 nodes in total. White (black) squares indicate the presence
(absence) of an edge.

the sparse connectivity of the network, through the elastic
net, to identify possible directed edges, even in the presence
of highly correlated data, a scenario where LASSO typically
fails. Elastic Net SEM was efficiently implemented using an
ADMM algorithm and preliminary tests on synthetic and real
data showcase promising results compared to the LASSO-
based SEM. Future research will focus on extensive numerical
tests with real datasets, extensions to multi-layer networks,
as well as distributed implementations and corresponding
identifiability analysis.
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