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Abstract—Tensor-based analysis of brain imaging data, in
particular functional Magnetic Resonance Imaging (fMRI), has
proved to be quite effective in exploiting their inherently mul-
tidimensional nature. It commonly relies on a trilinear model
generating the analyzed data. This assumption, however, may
prove to be quite strict in practice; for example, due to the natural
intra-subject and inter-subject variability of the Haemodynamic
Response Function (HRF). This paper investigates the possible
gains from the adoption of a less strict trilinear model, such as
PARAFAC2, which allows a more flexible representation of the
fMRI data in the temporal domain. In this context, and inspired
by a recently reported successful application of the Block Term
Decomposition (BTD) model to a 4-way tensorization of the fMRI
signal, a PARAFAC2-like extension of BTD (called here BTD2)
is proposed. Simulation results are presented, that reveal the
pros and cons of these tensorial methods, demonstrating BTD2’s
enhanced robustness to noise.

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a non-
invasive brain imaging technique, which studies brain activity,
by measuring fluctuations of the blood-oxygen-level dependent
(BOLD) signal [1]. BOLD fluctuation usually occurs between
3 to 10 seconds after the stimulus, and this effect is modeled
by the so called haemodynamic response function (HRF).
The localization of the activated brain areas is a challenging
Blind Source Separation (BSS) task [2], in which the sources
consist of a combination of spatial maps (areas activated)
and time courses (patterns of activation). FMRI data involve
multiple modes, such as trial and subject, in addition to the
intrinsic modes of time and space [3]. Multivariate bi-linear
(i.e., matrix-based) methods, based on the concatenation of
different modes, have been, up to recently, the state of the art
in fMRI BSS. However, by definition such methods fall short
in exploiting the multi-way nature of the data. Multilinear
(tensor) models can be used instead, which, in general, a)
produce unique representations [4], b) improve the ability of
extracting spatiotemporal modes of interest [3, 5, 6], and c)
facilitate neurophysiologically meaningful interpretations [3].

Two tensorial methods are commonly used for analyzing
multi-subject fMRI data, namely Canonical Polyadic De-
composition (CPD) [3] and Tensor Probabilistic Independent
Component Analysis (TPICA) [7]. Both assume that the data
have a trilinear form; in other words, the underlying signal
sources (both spatial maps and time courses) are the same for
the different subjects up to scaling. Of course, this presupposes
that physiological artifacts, which are not likely to satisfy this
assumption, have been removed prior to the analysis, and,
also, that different subjects have the same HRF. The latter
assumption of a global HRF function is not valid, since intra-
subject and inter-subject variability is known to exist [1, 8].
Hence, more flexible models, accommodating such variations,
need to be considered.
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PARAFAC?2 [9] is a model appropriate for three-mode data
that do not admit a perfect trilinear representation and allows
one of the modes to vary. It has been widely used in chemo-
metrics [10] and has been recently adopted in fused EEG-
fMRI [11] and proven effective in the analysis of functional
connectivity of resting state fMRI [12]. To the best of the
authors’ knowledge, it has not been used in the context of
BSS for task-related fMRI.

In [13], an alternative unfolding of the spatial domain of
the fMRI data has been used. Instead of unfolding every 3-
D image into a vector, its mode-1 matricization (mode-2 or
mode-3 can also be used with similar results) is employed.
Thus, instead of having a single matrix per subject, the
proposed unfolding forms a 3-D tensor (Fig. 1). In multisubject
cases, instead of a 3-D tensor, a 4-D tensor is formed.!
This higher-order unfolding in the spatial domain, combined
with Block Term Decomposition (BTD), leads to increased
robustness to the presence of noise, compared to CPD and
TPICA. In this paper, such a tensor decomposition method,
BTD2, is proposed, which by adopting a similar rationale
as PARAFAC2, bypasses the need for strict trilinearity and
allows for a decomposition in low multinear rank (instead of
rank-1) terms. Through extensive simulation results?, it will
be demonstrated that the use of non strictly trilinear models,
such as PARAFAC2, can improve the performance of BSS
in fMRI and, furthermore, that the proposed BTD2 method
can improve the accuracy and robustness of the decomposition
even in challenging very noisy scenarios.

A. Notation
Vectors, matrices and higher-order tensors are denoted by
bold lower-case, upper-case and calligraphic upper-case letters,
respectively. For a matrix A, A” and AT denote its transpose
and pseudo-inverse, respectively. An entry of a vector a, a
matrix A, or a tensor A is denoted by a;, a;; or a; ;.
respectively. I,, is the mth-order identity matrix and 1,,
(R TR i ) A
e #ﬁ’ A,
:Diﬂ::ie:‘;tstimes I e
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Fig. 1: Single-subject brain images unfolded in matrices and stacked

in tensors.

'A 5-D tensor could also be considered, albeit significant complexity increase
and only small gains in performance; for more details, see [13].

2Comparisons based on real data are far more difficult due to the lack of
ground truth in the fMRI problem. Such results will be included in a future,
more extensive version of this paper.
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denotes the m x 1 vector of all ones. The symbols ® and
x denote the Kronecker and the Hadamard (elementwise)
products, respectively. The column-wise Khatri-Rao product
of two matrices, A € R’*% and B € R7*%, is denoted by
A ©®B=[a;®b1,a2®@bs,...,ar @ bgr], with a;,b; being
the ith columns of A B, respectively. The outer product is
denoted by o. For an Nth-order tensor, A € RI1x 12X xIn
with N > 2, A, is its mode-n unfolded (matricized)
version, which results from mapping the tensor element with
indices (i1,12,...,iy) to a matrix element (i,,7), with j =

N , k—1
1+ Ek:l,k;ﬁn[(zk -1) Hm:l,m;ﬁn ).
II. TENSORIAL FMRI ANALYSIS

A. Canonical Polyadic Decomposition (CPD)

CPD (or PARAFAC) [14] approximates a tensor of multi-
subject fMRI data, 7~ € RI1*/2XI3 by a sum of R rank-1
tensors,

R
T:ZarobrocTJrS, (1)

=1
where &€ stands for theTmodeling error tensor (Iy = I,I,1I, in
Fig. 1). Equivalently,

Ty =A(CoB)" + E, )
and for the kth slice of T
T, =BD,AT +E,, k=1,2,..., 15, (3)

where A = [aj,ag,...,ag| is a matrix that contains the
weights of the R components of the I; voxels (spatial maps)
and B, C are similarly defined and contain the time courses
and the subject activation levels, respectively. Dy is the
diagonal matrix formed from the elements of the kth row of
C. The main advantage of the CPD, besides its simplicity,
is the fact that it is unique (up to permutation and scaling)
under mild conditions [15]. In fact, it was demonstrated
[5, 6, 13] that CPD with fMRI data is robust to overlaps
(spatial and/or temporal). On the other hand, the result of CPD
is largely dependent on the correct estimation of the tensor
rank, R [16, 17].

B. Tensor Probabilistic Independent Component
Analysis (TPICA)

Independent Component Analysis (ICA) has shown good
performance in the characterization of fMRI data [18]. TPICA,
as proposed in [7], is essentially a hybrid of the Probabilistic
ICA (PICA) [19] method and the CPD method for multi-
subject cases. Given a tensor of multi-subject fMRI data, T,
TPICA factorizes it as:

Ty ~ AM7, )
where the rows of A are assumed to be a sample of indepen-
dent, non-Gaussian [19] random variables and M = C ©® B
is a Khatri-Rao structured mixing matrix. TPICA computes
the decomposition of the tensor T~ in two steps: an ICA step,
which estimates M and A, and a Khatri-Rao factorization of
M (using Singular Value Decomposition (SVD)) to determine
B and C. 3 TPICA is more robust than CPD to rank estimation
errors but it exhibits inferior performance in the presence of
overlap in the sources and/or strong noise [5, 6].

3The non-iterative version of TPICA has been used, since the iterative
algorithm was shown to be flawed [6].
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C. Block Term Decomposition (BTD)

BTD [20, 21] is a generalization of CPD, which involves
terms of rank higher than one. In particular, the rank-
(L,,L,,1) BTD of a tensor Z 6 RIzxTy=xIz js given by

z= ZA obe(XTY,T)obT, (5)
r=1
where the matrlx A,n = X, YT € R’=*Iy= has rank L,.
Such a tensor decomposition model has been recently applied
in a 4-way representation of fMRI data [13], leading to
decomposition results robust to the presence of noise.

D. PARAFAC2

PARAFAC?2 [9] differs from CPD in that strict trilinearity is
no longer a requirement. CPD applies the same factors across
all the different modes, whereas PARAFAC2 relaxes this
constraint and allows variation across one mode (in terms of
the values and/or the size of the corresponding factor matrix).
For this reason, PARAFAC?2 is not a tensor decomposition
model in the strict sense as it can represent both regular
tensors, with weaker constraints than CPD, as well as irregular
tensors (collections of matrices of different dimensions) with
size variations along one of the modes (Fig. 2). It can be
written in terms of the (here frontal) slices of the tensor T~

as: T, = BiD AT +E;, k=1,2,..., 15, (6)

with By, being different for different k’s. This type of decom-
position is clearly non unique [9]. Thus, in order to allow for
uniqueness, it has been proposed to add the constraint that
the cross products Bka. are constant over k. This has been
shown [22] to be equivalent with B;, = P, H, where the Rx R
matrix H is the same for all slices, while the variability is
represented by the columnwise orthonormal I x R matrix
P;. Under this constraint, one has to fit the equivalent model

P/T, =HD,AT +E,, k=1,2,... 1. (7)

As shown in [22], P, can be computed as P, = VkUT,
where Uy and Vj are the left and right singular matrices of
HDkATT;;F. As can be seen from Eq. (7), the problem of fitting
PARAFAC?2 has been transformed into that of fitting a CPD
model with transformed data.

Applications of PARAFAC?2 in fMRI analysis include [11]
and [12]. The former study is concerned with joint fMRI-EEG
analysis in single subject cases, with the different modes being
time courses, spatial maps per slice, and slices, and allowing
the mode that represents the spatial maps to vary over slices.
In [12], the modes considered are time, subjects and space, as
in this paper. In that work, PARAFAC2 was evaluated along
with other covariance-based models with respect to (w.r.t.) its
effectiveness in capturing the brain’s functional connectivity.

T
S DARAFAC
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Flg‘ 2: D1fferent types of decomposmons.
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III. BLOCK TERM DECOMPOSITION 2 (BTD?2)

Phan et al. [23, 24] have shown that unfolding noisy high-
order tensors to lower order counterparts generally results in
loss of accuracy in the respective decomposition. The extent
of this loss in accuracy depends on the degree of collinearity
of the columns in the unfolded mode. Furthermore, as pointed
out in [25], the ability of multiway fits to make more robust
predictions, compared to their two-way counterparts, seems to
grow with the noise level. The fMRI signal is known to be
highly contaminated by different types of noise (both due to
hardware and physiological reasons). The use of higher-order
tensors could, therefore, improve the BSS performance, both
in terms of accuracy and robustness w.r.t. noise. Motivated
from these findings, it was demonstrated in [13] that a higher-
order tensorization of the data, which takes the 3-D nature
of the brain volume into account to form a 4th-order tensor
(I1 = I.1,.), combined with the use of rank-(L,L,1,1) BTD,
is consideraby more robust to noise, compared to the CPD
and TPICA-based decompositions. In the light of these results
and since PARAFAC?2 is a more suitable (than CPD) model for
realistic scenarios, involving different time courses per subject
(inter-subject HRF variability), we propose and evaluate here
a BTD analog, called BTD2. The rank-(L,L,1,1) extension
of Eq. (5) for the 4th-order tensor T~ € RIe*luzxI2XIs jg
expressed as [13]:

R R
T=> Aroboc,+€=) (X, Y] )ob,oc, +& (8)
r=1 r=1
where the matrix A, = XTYI € R%=*Iy= of rank L contains
the factors of the spatial (voxel) activity of the R sources and
the matrices B and C = [cj,cCq,...,cg] correspond to the
associated time courses and_subjects, respectively.Using the
(mode-3) unfolding of the T = T(:,:,:, k) € RIexTv=xl2
tensors (k = 1,2,---,1I3) to the matrices Tj, € RI2*1elu=
yields the BTD2 decomposition:

T, = (BiS)Dp(XOY) k=1,2....I5. (9

The matrices S = blockdiag(17 ,17 Lo+ ,17,) and Dy =
blockdiag(ci1Ir,,-..,ckrILy;) appear in formulatmg BTD
as CPD, similarly to [26]. Extending the PARAFAC?2 direct fit
algorithm from [22] to the above 4-way model and appropri-
ately adapting the ALS iterations from CPD to BTD as in [26]
results in Algorithm 1. Concerning uniqueness of PARAFAC?2,
concrete results have only been reported for the special cases
of rank R = 2 or 3 [27, 28]. For the general case, a sufficient
(but not necessary) condition was proved in [29]. All of these
conditions can be extended to BTD2 (details are omitted due
to space limitations). For instance, the condition in [29], which
is based on the maximum number of unique combinations of
four diagonal elements (with possible repetition) of Dy, can
be generalized as Is > R(R + 1)(R + 2)(R + 3)/24, with
R = Zf‘:LLr. When L, is the same for all r, as it is the
case here, R = LR.

IV. SIMULATION RESULTS

Simulated datasets similar to those in [5, 7] have been
employed in our comparative study. The signal consists of
artificial voxel activation maps (of three different slices), time
patterns and activation strengths for three subjects. White
random Gaussian noise is added, with the noise mean and
variance being estimated from real resting state fMRI (for
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Algorithm 1: BTD2 algorithm for a 4th-order tensor.

: A 4th-order tensor T~ € RIe*TvzxI2xIs 'R and [,
Output: Spatial factors X = [X1, X2,..., X g),

Y =[Y1,Ys,...,Yg] with X; € R=*% and
Y € RIv=*L temporal factor B € R2*F and
subject factor C' € RT* %,

1 Calculate initial values of X, Y, H and C with SVD or using
multi-initialization techmque'

Input

2 S «+ blockdiag(17,,17,,.. ,IER);

3 repeat

4 for k< 1to I3 do

5 Dy, <—blockdlag(cklILl,...,ckRILR) ;

6 Tk (mode-3 matricization of ’Tk) € RfzxI=ly= (9) .
7 SVD of (HS)Dy(X ® Y)TTk =UrALVT;

8 P, VUL ;

9 Zi + PLTy, (Zy being the kth slice of Z) ;

10 end

1 repeat

12 W, <« (8TCTCS)« (STHTHS)* (YTY)) ;
13 X+ Z1)((CS)® (HS) oY)W, ;

14 W, ((STCTCS) (STHTHS) (XTX)) :
15 Y < Z)((CS)® (HS)® X)W, ;

16 W, < S((STCTCS) + (YTY) x (X7 X))S™
17 H <« Z3((CS) oY ©X)S"™Wh';

18 W. <+ S(STHTHS) « (YTY)* (XTX))ST
19 C+ Zwy(HS)oY 0 X)S"W,';

20 until stopping criterion has been met;

21 until stopping criterion has been met;
22 for k < 1 to I3 do

23 ‘ Bk — PkH;

24 end
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Fig. 3: Spatial maps of datasets A, G. Common time courses.
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details, see [7]). The voxel-wise noise mean and variance are
the same for each subject. Beckmann and Smith [7] consider
five different artificial fMRI datasets, named A-E, which differ
only in their signal part and have no spatial overlap, while
Stegeman [5] added three more fMRI datasets, F-H, with
high percentage of spatial overlap between the sources. In
dataset G, the first two spatial maps are a combination of
spatial maps 1 and 2 of dataset A with overlap more than
50%. The time courses and the spatial maps consist of three
different spatiotemporal processes, present in every subject
with different power. In this paper, datasets A, G (lowest and
highest spatial overlap) (Fig. 3) and C will be used. Dataset C
has the same spatial maps as A, but with different convolution
parameters for the generation of the time courses. In datasets
A and G, a canonical HRF is assumed for all subjects, while
in dataset C, the HRFs of every subject differ in mean lag and
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Fig. 4: Datasets C and I decomposed by different methods.

standard deviation (stdev = 3, 3.5, and 4 seconds, mean lag
of 4, 5, and 6 seconds). This induces small differences in the
temporal signal per subject. Using the same HRF parameters
and spatial maps of dataset G, an extra dataset I has been
generated (different time courses per subject with high spatial
overlap). Furthermore, the mean lag of datasets C and I has
been increased to test the performance of the algorithms in
such conditions.

The performance evaluation is based on both visual in-
spection and Pearson correlation values. We computed the
correlation between the time courses obtained from the dif-
ferent methods and the actual ones, as well as the correlation
between the estimated spatial maps and the real “averaged”
spatial maps computed via the Ordinary Least Squares (OLS)
regression (similarly to [5, 7]). In Tables I-IV, the mean
Pearson correlation coefficients of 20 runs are summarized.
The initialization for CPD, PARAFAC2 and BTD is performed
with multi-initialization (multiple runs with less iterations) in
order to avoid local minima. The standard deviations of the
mean correlation coefficients were similarly low in all methods
(slightly higher in datasets A and C where the power of the
signal of activation is lower).

Even in datasets where the assumption of trilinearity is valid
(datasets A and G with the same time course per subject)
the result of PARAFAC?2 is almost the same as that of CPD,
with slightly higher cross-talk (cf. Fig. 4 and Tables I-II).
In datasets C and I, where trilinearity is not satisfied, CPD
completely fails to correctly extract three different sources,
even if we consider an equivalent trilinear model of higher
rank (R = 9). TPICA manages to handle the non-overlapped
case of dataset C (the result is slightly better than that of
PARAFAC?2 because there is less crosstalk between wrong
maps) but in cases of high overlap (Datasets G-I) it fails
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TABLE I: Correlation of spatial maps in different datasets.

I Dataset A I Dataset C [ Dataset G Dataset T |
| Map T T Map2 [ Map3 ]| Map I [ Map2 [ Map3 [ Map I [ Map2 [ Map3[| Mapl [ Map2[ Map3 ]
TPICAMI' ][ 068 | 0I 0.1 064 T-0I T OIT T 085 T 075 [ OIT [ 086 [ 074 018
TPICAM2 || 01 | 099 | 01 01 | 097 | 01 069 | 089 | 009 || 068 | 089 | 008
TPICAM3 || 0.1 00 ] 096 || 011 | 01 | 095 | 011 | 042 | 098 || 004 | 011 | 098
CPD*MI || 074 | -02 [ 012 ]| 059 | 024 ] 029 || 09 | 040 | -0.02 | 070 | 059 | 038
CPD*M2 || 018 | 097 | -0.12 || 029 | 065 | 05 | -048 | 094 | -0.02 || 08 | 081 | 028
CPD*M3 || -020 | 012 | 099 || 039 | 035 | 078 || A1 | 011 | 098 || 039 | 043 | 078
PFACIMI || 074 | 024 | 018 [ 075 | -024 [ 0.09 | 097 [ 044 [ 012 [ 091 | 049 | -0.I8
PFACZM2 || 003 | 096 | 0.7 || 018 | 092 | -0.04 || 054 | -09 | 018 | 048 | 088 | 0.16
PFACZM3 || 023 | 022 | 099 | 019 | 023 | 094 | 02 | 014 | 095 || 012 | 013 | 093

TABLE 1I: Correlation of time courses in different datasets.

[ Time Dataset A I Dataset C I Dataset G I Dataset [ |
| Courses || Tes T [ Tes2 [ Tes3 [ Tes T [ Tes2 [ Tes3 [ Tes T [ Tes2 [Tes3 [ Tes I [ Tes2 [ Tes3 ||

TPICATI [ 044 7007 [ 006 ] 045 [ 0227 0I5 T 09 [ -054 T 013 084 T 049 0.18
TPICAT2 || 008 | 092 | 0.07 || 0.1 | 089 | 01 | 030 | 092 | 021 || 034 | 091 0.18
TPICAT3 | 01 01 | 096 || 001 | 01 | 092 || 014 | 012 | 094 || 0.14 | 009 0.89
CPD*TI [ 0.58 [ 007 [ 0.18 [[ 049 [ -034 [ 038 | 096 [ 024 [ -0.1T ][ 0.54 | 039 038
CPD*T2 || 02 | 092 | -024 || 038 | 062 | 025 || -030 | 092 | 021 || 034 | 082 038
CPD*T3 || 0.8 | 007 | 095 || 039 | 025 | 084 || 011 | 0.1 | 094 || 024 | 019 0.68
PFAC2TI || 058 | 0.2 [ 0.9 ]| 057 [ 0.14 | 0.8 || 094 | -028 [ -0.I5 || 094 | 0.29 0.13
PFAC2T2 || 021 | 092 | 02 || 023 | 091 | 021 || 032 | 09 | 026 || 034 | 092 0.24
PFAC2T3 || -0.12 ] 0.1 | 099 || 02 | 0.2 | 094 || 023 | -0.19 | 089 || 0.24 | 0.19 0.88
*Correlation values of 3 most correlated components with R=0. The remaining 6 components have also relatively high crosstalk.

H Maps

dramatically to separate the spatially overlapped sources. If
we increase the lag introduced to HRF, the result of TPICA is
getting worse, while PARAFAC2 remains stable (as the cross
product of time courses is stable) and gets better than TPICA
even for dataset C.

Having verified the effectiveness of PARAFAC2 in these
scenarios, the focus is now moved to the proposed BTD2
method using noise of varying strength. The Signal to Noise
Ratio (SNR) is defined as the Frobenius norm of the signal
divided by the Frobenius norm of the noise [5]. The SNR
values are different in datasets C and I, due to the fact that
dataset I has more areas activated and hence stronger signal.
It is readily seen from Tables III-IV that BTD2 is more robust
than PARAFAC2, even in the noisier cases. The result of
PARAFAC2 deteriorates significantly for SNR values lower
than 0.05 for dataset C and 0.10 for dataset I, while the
result of TPICA deteriorates for even higher values of SNR
(TPICA results are not included in Tables III-IV due to space
limitations). We can also see that the component which is
less influenced by noise is component no. 3, which is quite
reasonable since it has the minimum spatial and temporal
overlap with the other sources. The result of BTD2 is fairly
insensitive to overestimation of L (its value was set equal
to 32). On the other hand, BTD2 is computationally more
complex since more factors need to be computed.

TABLE III: Correlation of spatial maps at different SNRs.

Maps SNR=0.08 SNR=0.06 SNR=0.04
Tes 1 Tcs 2 | Tes 3 Tces T Tcs 2 | Tes 3 Tes T Tcs 2 | Tes 3
PFAC2 M1 0.75 -0.24 0.19 0.7 -0.32 0.24 0.52 0.36 0.28
© PFAC2 M2 0.18 0.92 -0.14 0.24 0.81 0.28 0.44 0.62 0.36
] PFAC2 M3 0.19 0.23 0.94 0.28 -0.34 0.75 0.32 0.38 0.63
g BTD2 M1 0.76 -0.22 0.2 0.72 -0.26 0.24 0.68 0.3 0.28
a BTD2 M2 0.13 0.91 -0.16 0.14 0.86 0.22 0.24 0.74 0.28
BTD2 M3 0.18 0.23 0.92 0.22 -0.34 0.81 0.27 -0.4 -0.69
SNR=0.15 SNR=0.12 SNR=0.0:
PFAC2 M1 0.91 0.49 -0.18 0.82 -0.54 0.21 0.702 0.64 -0.24
ol PFAC2 M2 0.48 0.88 0.16 0.52 -0.84 0.18 0.56 0.68 0.26
2 PFAC2 M3 0.12 0.13 0.93 0.19 0.21 0.9 0.23 0.25 0.85
5 BTD2 M1 0.9 0.51 -0.19 0.87 -0.54 0.2T 0.80 0.32 -0.24
=] BTD2 M2 -0.46 0.89 0.17 0.5 0.78 0.2 0.5 0.72 0.26
BTD2 M3 0.14 -0.14 0.93 0.18 0.21 0.91 0.2 0.22 0.87

TABLE 1V: Correlation of time courses at different SNRs.

Time SNR=0.0: SNR=0.06 SNR=0.04
Courses Tes T [ Tes2 [ Tes 3 Tes T [ Tes2 [ Tes 3 Tes T [ Tes2 | Tes 3
PFAC2 TI 0.57 0.14 0.18 0.5 -0.18 0.18 0.39 0.22 02
© PFAC2 T2 0.23 0.91 0.21 0.31 0.89 0.23 0.39 -0.72 -0.28
g PFAC2 T3 -0.2 0.12 0.94 0.21 -0.16 | -0.84 0.23 0.2 0.72
= BTD2 T1 0.56 0.15 -0.16 0.52 0.17 0.17 0.48 -0.21 -0.22
a BTD2 T2 0.21 0.92 0.22 0.23 0.89 0.23 0.29 -0.8 -0.25
BTD2 T3 -0.21 0.13 0.94 -0.21 -0.15 | -091 0.21 0.21 0.82
SNR=0.15 SNR=0.12 SNR=0.08
PFAC2 TI 0.94 0.29 0.13 0.84 0.34 02 -0.68 [ -0.45 | -0.2T
- PFAC2 T2 0.34 0.92 0.24 0.36 -0.85 -0.28 -0.43 0.57 -0.34
2 PFAC2 T3 0.24 0.19 0.88 0.26 0.23 0.84 -0.33 0.39 -0.8
£ BTD2 T1 0.93 -031 0.12 0.88 0.33 0.18 0.75 0.38 022
a BTD2 T2 -0.33 -0.91 -0.22 0.34 -0.88 -0.25 -0.39 0.72 0.28
BTD2 T3 0.21 0.2 0.91 0.24 -0.22 | -0.87 -0.3 -0.32 0.83
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V. CONCLUSIONS

In this paper, a new tensor decomposition method, called
BTD?2, was proposed, which is based on BTD while allowing
variation across one mode. It was demonstrated in simulated
scenarios that non trilinear tensor decomposition methods,
such as PARAFAC2 and BTD2, are expected to be more suit-
able for BSS in fMRI due to the variability of the HRF across
subjects and they result in improved decomposition compared
to strictly trilinear methods like CPD and TPICA. Once more,
it has been seen that TPICA has difficulties in cases of overlap
while it remains more robust w.r.t. rank estimation than CPD.
The proposed tensor decomposition, BTD2, combined with
a higher-order unfolding, exhibits significant robustness to
noise compared to PARAFAC?2, albeit at the cost of a higher
computational complexity.
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