
EMOEEG: a New Multimodal Dataset for Dynamic
EEG-based Emotion Recognition with Audiovisual

Elicitation
Anne-Claire Conneau∗, Ayoub Hajlaoui†∗, Mohamed Chetouani† and Slim Essid∗

∗ LTCI, Télécom ParisTech, Université Paris–Saclay

†Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie

Abstract—EMOEEG is a multimodal dataset where
physiological responses to both visual and audiovisual
stimuli were recorded, along with videos of the subjects,
with a view to developing affective computing systems,
especially automatic emotion recognition systems. The
experimental setup involves various physiological sen-
sors, among which electroencephalographic sensors.
The experiment is performed with 8 participants, 4
from both genders. The stimuli include both sequences
of static images from the IAPS dataset, and short
video excerpts focusing on negative fear-type emo-
tions. The annotation is obtained by participant self
assessment, after a calibration phase. In the case of
video stimuli, a novel simplified dynamic annotation
strategy is used to enhance the quality and consistency
of the self-assessments. This paper also analyses the
annotation results and provides a statistical study of
inter-annotator agreement. The dataset will continue
to grow and will be made publicly available.

Index Terms—Electroencephalography (EEG), Mul-
timodal Data, Affective Computing, Fear-type Emo-
tions, Valence, Arousal, Annotation, Inter-annotator
agreement

I. Introduction

Having a better grasp on physiological manifestations of
human emotion would be beneficial for affective comput-
ing research. Contributions to automatic emotion recog-
nition mainly rely on modalities such as speech, facial
expressions, or eye gaze. The main limitation of these
modalities is their alterability, whether voluntary or not
[1]. In contrast, physiological modalities such as electroen-
cephalography (EEG) do not suffer from such a drawback.
Compared to other physiological modalities, EEG has the
advantage of capturing information related to internal
emotional states which may not be reflected externally.
Thus, EEG has attracted the attention of researchers in
the field of affective computing and it has been shown to
hold precious cues for emotion classification [2].

In order to achieve such a goal, synchronized multimodal
datasets are needed, with enough experimental repetitions
for each subject to capture intra-subject variability of
physiological signals. Indeed, the individuality of physi-
ological responses plays a major role, whether it be at

the feature extraction level or at the stage of assessing
the emotion [3]. Also, to be applied in real-world scenarii,
multimodal and dynamic stimuli should be employed, but
only a few corpora fulfill these requirements.

In this paper, the focus is put on a complex emotion
recognition setting for which multimodality is interesting,
along the line of the MAHNOB-HCI initiative [4]. The
latter provides multimodal recordings of subjects who
watched audiovisual stimuli for emotion recognition and
implicit tagging research purposes. So do the eNTER-
FACE’06 [5] and DEAP [6] data collection initiatives.
However, these datasets have some limitations, notably
the fact they do not take into account the dynamics of
emotional states, that is their variation over time during
the exposition to such stimuli.

With this in mind, we have performed synchronized
multimodal recordings of subjects while visual and audio-
visual stimuli were presented to them. The visual stimuli
were extracted from the IAPS [7] (International Affective
Picture System) database, whereas the audiovisual stimuli
were extracted from the SAFE corpus [8]. Self-annotation
was made dynamically, each participant giving both global
and variational feedback (dynamic annotation) on each
stimulus after being exposed to it. The originality of our
dataset lies in three main aspects:

• Repetitions were performed on a per subject basis
for the purpose of a reliable intra-subject classifica-
tion. This accommodates the known fact that the
brain activity is subject specific, especially as far
as physiological manifestations of affective states are
concerned.

• A calibration phase was designed, using specific im-
ages so that a participant could get familiar with
the valence-arousal space, at the beginning of the
process, then be able to refer to those calibration
stimuli during the self-annotation that follows each
subsequent image or video stimulation.

• Moreover, a novel dynamic annotation scheme was
implemented, for the case of video stimuli, that adopts
a simplified strategy in order to make the produced
self-annotations more robust, and favor their con-
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sistency (both on an intra-subject and inter-subject
basis).

The description of the protocol and the signals recorded
in our database is made in Section II, followed by the de-
scription of the emotion self-assessment strategy in Section
III. Section IV discusses inter-annotator statistics. Finally,
we give our conclusions in Section V.

II. Apparatus
A. Stimuli choice

EEG responses have a high inter-subject variability,
as shown for instance by the results that Lee and al.
obtained on the IDIAP database [3]. Therefore, being
able to perform effective EEG-based emotion recognition
usually requires numerous recording instances per subject.
In the case of video stimuli, the duration of each stimulus
has to be long enough (at least 10 seconds) to allow
dynamic emotion elicitation. On the other hand, the
duration of the experiment should remain reasonably
short in order to control the cognitive load on the
subject. Too long experiments would indeed result in
an unsatisfactory concentration level throughout the
session. Consequently, we chose to limit the duration of a
session to 90 minutes, which was verified to be reasonable
through some preliminary tests. This has constrained the
number of images and video stimuli that we chose to
exploit, as described below.

1) Visual stimuli: The images were extracted from the
IAPS database. The IAPS database is composed of images
which were self-assessed by 100 annotators [7]. Following
the approach chosen by the eNTERFACE’06 initiative [5],
the visual stimuli were assembled as blocks of 5 related
images each. We actually used a selection of blocks con-
sidered in [5] in order to facilitate the comparison with this
dataset. A total of 50 blocks corresponding to 250 images
was exploited. Each block belongs to one of these 3 classes:
neutral (average valence, low arousal), positively excited
(high valence, high arousal) and negatively excited (low
valence, high arousal). Figure 1 represents the distribution
of the selected images in the valence/arousal space [9], [10],
where we can clearly distinguish 3 clusters corresponding
to those 3 classes.

2) Audiovisual stimuli: In order to observe emotion dy-
namics, the video stimuli were chosen to be slightly longer
than the blocks of image stimuli. Most videos were selected
from the SAFE corpus, in addition to 6 videos related to
phobias and 2 emotionally neutral videos. This choice is
motivated by the development of strategies amenable to
the analysis of the impact of violent videos on humans,
and possibly treatments for subjects suffering from phobia.
Thus, in terms of valence and arousal, there is a bias
towards negative emotions in the choice of video stimuli.
The SAFE corpus contains 401 excerpts extracted from 30
movies. Each excerpt is divided into segments of variable

Fig. 1. Distribution of extracted images in the valence/arousal space

length corresponding to a variation of elicited emotion,
with a focus on negative fear-type emotions. Excerpts from
this corpus which best show the emotion dynamics were
selected according to the standard deviation of user anno-
tations characterizing the evolution of the imminence and
intensity of danger in each video excerpt. A total of 100
video stimuli was used. Each video lasts approximatively
15 seconds, and each session is composed of 50 videos.
The sound volume was normalized for all videos, in order
to avoid arousal bias that could result from loud audio in
some videos.

B. Recording equipment and synchronization
A wireless B-Alert X241 headset recorded the EEG,

EOG (Electrooculogram), EMG (Electromyogram) and
ECG (Electrocardiogram) of the participant, whereas an
Affectiva bracelet2 recorded both skin conductance and
temperature. A PC with a 64-bit operating system was
used to play the stimuli, record all the signals and
manage the protocol procedure, whereas a full HD TV
(165cm) played the stimuli. The physiological recordings
were timestamped by the PC. The Affectiva bracelet was
synchronized with the system timestamping of the PC
before the beginning of the experiment. Further, a discrete
HD camera was placed in front of each participant, as
well as a second HD control camera which allowed the
experimenter, located in another room, to check the atten-
tion level of the participant. A microphone was directed
towards the participant. A Linear Time Code (LTC) was
recorded in one of the audio channels of the HD video
cameras in order to accurately locate its frames across
time. This LTC signal was initialized at the beginning of
each experiment.

C. Experimental protocol
Each session was composed of a calibration phase (Sec-

tion III-C), after which 25 eNTERFACE’06 blocks were

1http://www.advancedbrainmonitoring.com/xseries/x24/
2http://qsensor-support.affectiva.com/
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randomly presented to the participant, followed by 50
short videos. To take into account the persistence of an
emotional state after the end of the stimulus playback, the
subject looked at a white screen for 10 seconds, right after
watching a block of images or a video (Figure 2.). After
that, he/she assessed his/her global valence and arousal
levels during the stimulation (global or static annotation),
with discrete values ranging between 1 (very negative) and
9 (very positive). In the case of audiovisual stimuli, the
subject dynamically annotated the stimuli .

D. Summary
Table I summarizes the EMOEEG database properties.

A total of eight subjects participated to the experiment.
Three of them went through two different sessions, where
different stimuli were used. We use this to evaluate the
ability of emotion recognition systems to generalize across
different sessions. This makes a total of 11 sessions. All
participants signed an informed consent.

The dataset will be made publicly available through a
companion website3. Also, the recordings will continue in
the next fews months and new recordings will be posted
as they become available.

III. Recorded signals and annotation
A. EEG and other physiological signals

EEG signals were recorded at a sampling frequency
fs = 256 Hz. The 20 EEG electrodes of the B-Alert
X24 headset that we used follow the 10-20 international
system. ECG, EOG, and EMG were recorded by the same
system, with other electrodes. EEG signals are usually
polluted by artifacts resulting from various sources, such as
ocular or muscular movement. However, rather than being
considered as mere artifacts, the corresponding additional
ECG, EOG and EMG signals can also be used for emotion
recognition, as shown in [11], [12]. In addition to these

3http://www.tsi.telecom-paristech.fr/aao/en/2017/03/03/emoeeg-
a-new-multimodal-dataset-for-dynamic-eeg-based-emotion-
recognition-with-audiovisual-elicitation/

Fig. 2. Protocol for one stimulus

TABLE I
Subjects and corresponding sessions

Number of participants 8, 5 male and 3 female
Number of sessions 11

Participants who took 2 sessions 5,6,8
Number of stimuli per session 25 image blocks, 50 videos

Duration of an image repetition 25,5s
Duration of a video repetition 28s
Physiological signals recorded EEG, EOG, EMG, ECG, EDA

Fig. 3. Example of a ranking of calibration stimuli in terms of
valence.

signals, skin conductance and temperature were recorded.
They could be used both for emotion classification or as a
way of controlling the consistency of emotional state self-
annotation.

B. Emotion self-assessment strategy

The subjects were asked to evaluate the emotion they
felt and not the emotion they might attribute to the
stimulus (sometimes called perceived emotion). For in-
stance, if the video excerpt came from a horror movie,
but did not frighten them, they were not expected to
annotate fear. They were asked to locate the emotion
they felt in the valence/arousal space [10].The annotation
was made using a modified version of the Self Assessment
Manikin (SAM) [9] approach. The modification consists in
displaying, along with the manikins, the images annotated
in the calibration phase (see below) so they can serve as
references. It is indeed acknowledged that it is easier for
an annotator to proceed in a relative fashion, comparing
the valence/arousal values of a stimulus to be assessed to
some references (here the calibration images), as opposed
to rating them in an absolute fashion [13].

C. Calibration phase

One of the important characteristics of EMOEEG is
the introduction of a calibration phase performed by each
participant in order to (i) become familiar with the notions
of valence and arousal, and (ii) to identify his/her limits
on each dimension. The calibration phase was composed
of 9 images selected from the reference IAPS database.
These images were chosen to span over the whole extent
of the valence/arousal space and correspond to low stan-
dard deviation values in terms of valences and arousals
reported by IAPS annotators (high reference annotation
confidence). The participant was asked to annotate and
sort these 9 images using a discrete annotation scale
ranging from 1 to 9 for both the valence and arousal
dimensions. Figure 3 depicts the annotation process during
the calibration. The subject placed each of the images on
the valence or arousal axis appearing below the manikins,
where each green icon corresponds to a different image,
identified by its number.
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D. Global and dynamic annotation

Global annotation allows participants to evaluate the
emotion elicited by each stimulus and it is performed after
each block of images selected from the eNTERFACE’06
protocol. It was also performed for each audiovisual stim-
ulus.

Dynamic annotation allows them to describe potential
changes of affective states during a stimulus. Our approach
differs from the one proposed by Gtrace4, which requires
that the participant annotate each dimension dynamically
in a synchronized way with the video. In that case, he/she
has to watch the entire video a second time, after its
initial playback, the one that is considered to elicit the
emotion to be analyzed. This implies longer sessions and
may cause exhaustion in the sense that watching the video
and annotating it synchronously induces a supplementary
cognitive load. Finally, video playback repetitions may
cause habituation and affect the capacity of the used to
annotate the elicited emotion, the one felt during the first
stimulus playback.

To alleviate these issues, we propose a new dynamic
emotion annotation strategy, less costly both in time and
in cognitive load, in addition to an improvement regarding
habituation problems. Our dynamic annotation gathers
both dimensions (valence and arousal) in one window, so
that the participant can annotate them simultaneously,
which subsequently reduces the duration of the annotation
phase. Moreover, our configuration does not imply anno-
tating while watching the video. Rather, the participant
watches the video only once, after which he/she has to
remember the variation of the emotion he/she felt while
watching it. The variation is re-transcribed only roughly
as a three-segment annotation, namely three values per
dimension, respectively corresponding to the beginning,
the middle and the end of the video. No specific time
division is imposed to the participant, that is the exact
location of beginning, middle and end segments is not to
be specified. Figure 4 illustrates this annotation approach.
Subjects who watched the same video may thus choose
different values of valence (or arousal) that would still
exhibit the same dynamic trend (e.g. completely flat,
increasing then decreasing, etc.).

E. Inter-annotator agreement statistics.

To evaluate the quality of the self-assessments made
by the subjects who took part in our recordings, we
analyzed the annotation reliability by computing various
inter-annotator statistics. In this part, we report inter-
annotator agreement analysis with the IAPS reference
labels (performed by the IAPS annotators) of visual
stimuli and traditional statistics (Cohen’s kappa and
correlation).

4https://sites.google.com/site/roddycowie/work-resources

Fig. 4. Dynamic video self-annotation.

TABLE II
Pearson’s correlation coefficients between IAPS

annotations and each EMOEEG’s subject annotations on
eNTERFACE’06 image blocks.

Subject Valence correlation Arousal correlation
1 0,69 0,48
2 0,95 0,81
3 0,88 0,54
4 0,88 0,49
5 0,91 0,74
6 0,96 0,77
7 0,97 0,56
8 0,93 0,76

Average 0,90 0,64

1) Correspondence between EMOEEG and IAPS
annotations: We computed Pearson’s correlation
coefficients between each subject’s annotations and the
IAPS reference annotations. We consider it as a measure
of consistency between the emotion each annotator felt
for a given stimulus and what that stimulus generally
elicits. Table II reports these coefficients for each subject
and for each dimension. It reveals stronger agreement for
the valence dimension. For both dimensions, it is made
clear that correlation coefficients are subject-sensitive.

2) Inter-annotator agreement within EMOEEG: Of the
50 image blocks and 100 video excerpts used as stimuli in
the corpus, all the subjects did not watch the same ones.
Therefore, the number of stimuli that are common to a
pair of subjects varies from 9 to 50 for visual stimuli and
22 to 50 for audiovisual ones.

Cohen’s kappa coefficient κ [14] measures the agreement
between two annotators. Table III indicates the mean of
kappa coefficients among all pairs of subjects for different
types of stimuli. For each pair, the coefficient is computed
over the stimuli that the two subjects had in common. A
value higher than 0.61 is considered as good, and between
0.41 and 0.60, it is considered as moderate. As expected,
the table shows that higher agreements are obtained with
image stimuli and static annotations.

As shown in Table IV, in the case of audiovisual stimuli,
the use of dynamic annotations improves inter-annotator
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TABLE III
Mean of kappa coefficients among all pairs of subjects for

different types of stimuli

Stimuli Valence arousal
Images 0.75 0.30

Videos (global+dyn. annotation) 0.18 0.08
Images and videos (global ann.) 0.49 0.18

TABLE IV
Mean of kappa coefficients among all pairs of subjects for
both types of annotation in the case of audiovisual stimuli

Annotation Valence Arousal
Global 0.12 0.08

Dynamic 0.19 0.08

agreement when it comes to valence, whereas arousal inter-
annotator agreement is not impacted.

In affective computing, ranking emotional experiences
is more relevant than quantifying them [13]. In such a
context, Pearson’s correlation might not be adequate:
therefore, we also computed Spearman’s correlation, which
does not compute the correlation between the values of
two variables, but rather between the ranks of such values.
Table V reports the means of p-values obtained on all pairs
of subjects using Pearson’s or Spearman’s correlation,
both with image annotations and video static annotations.
P-values represent the probability of wrongly assuming
that the correlation is greater than 0. They are computed
using a Student’s t distribution in Pearson’s case, whereas
in Spearman’s, exact permutation distributions are used.
The results show that even if the Spearman’s coefficient
does not give better results in all cases, it allows the p-
value to drop under 0.05 in the arousal case, for which
Table II showed lower agreement than for valence.

Moreover, Table V shows better p-values for videos
than for images in the arousal case, whether it be using
Pearsons’s or Spearman’s coefficient. This could seem in
contradiction with the results obtained using Cohen’s
kappa in Table III. However, the nature of such coef-
ficients is different. In addition, the variation of arousal
might be clearer from one video to another than from one
block of images to another.

TABLE V
Mean of Pearson and Spearman p-values

Coefficient Images Videos (global)
Pearson (valence) 0.003 0.03

Spearman (valence) 0.01 0.03
Pearson (arousal) 0.07 0.03

Spearman (arousal) 0.06 0.02

IV. Conclusions
We have recorded a multimodal affective dataset at

the disposal of the affective computing community. It
contains various modality recordings such as physiological

responses (EEG, ECG, EMG, EOG, skin conductance,
temperature information) and videos of the subjects. It
offers a significant number of experimental repetitions per
subject, which is not common for this kind of task. It also
comes with an innovative annotation strategy which both
exploits a calibration phase and a dynamic approach of
emotion elicitation. Finally, inter-annotator statistics have
been presented and discussed. They show higher inter-
annotator agreements for valence than for arousal. Further
work will focus on the use of annotation dynamics for
emotion recognition.
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