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Abstract—Graph-based semi-supervised learning for classifica-
tion endorses a nice interpretation in terms of diffusive random
walks, where the regularisation factor in the original optimisation
formulation plays the role of a restarting probability. Recently,
a new type of biased random walks for characterising certain
dynamics on networks have been defined and rely on the γ-
th power of the standard Laplacian matrix Lγ , with γ > 0.
In particular, these processes embed long range transitions, the
Lévy flights, that are capable of one-step jumps between far-
distant states (nodes) of the graph. The present contribution
envisions to build upon these volatile random walks to propose a
new version of graph based semi-supervised learning algorithms
whose classification outcome could benefit from the dynamics
induced by the fractional transition matrix. 1

I. INTRODUCTION

Graph-based semi-supervised learning (G-SSL) has received
considerable attention in recent years as an alternative ap-
proach to the popular paradigm of supervised learning. While
supervised learning methods rely just in labeled data, G-SSL
methods aim to exploit both labeled data and the structure
imposed by the unlabeled data, naturally captured by a graph,
in order to build better classifiers [1]–[3]. This is of utmost
importance since nowadays large amounts of unlabeled but
relationned data are readily accessible in comparison to labeled
data which may be expensive to obtain. G-SSL has seen
success in tasks like classification of BitTorrent content and
users [4], text categorization [5], medical diagnosis [6], among
others. Notably, the popular methods of Standard Laplacian
(SL) and PageRank (PR), on which we will focus, have a
closed form solution that allows for a probabilistic interpreta-
tion based on the theory of random walks on graphs. Viewed
from this angle, the decision rule to classify unlabeled nodes
relies on the expected number of visits from each class-specific
random walk. In particular, SL can be then interpreted as
walkers starting from unlabeled nodes and reaching nodes
tagged by an expert, while PR acts conversely. Despite their
remarkable performance, in cases of very few labeled points,
several questions remain to be addressed such as how to
deal with unbalanced scenarios or with graphs that are badly
constructed in which usual G-SSL methods are known to
perform poorly.

Contributions and Outline: In this article, we propose
to build upon the random walk interpretation of G-SSL
methods, to extend the classification principle to other types
of processes, such as Lévy Flights. The dynamics of these

1We thank CONACYT and Labex MILyon for the financial support.

more volatile random walks has been shown to be more
efficient/rapid at diffusing over irregular graph structures [7]–
[10] and therefore may, in some circumstances, address some
of the limitations of G-SSL.
We start recalling in Sec. II-A the generalized formulation
of G-SSL, emphasizing the special cases of SL and PR. We
present the rationale behind long-range random walks and
list different incarnations that lead to Lévy Flights and to
biased random walks. In Sec. III, novel definitions of G-
SSL using Lévy Flight-based operators are proposed as our
main contribution: we call these Fractional Graph based Semi-
Supervised Learning (Fractional G-SSL). Theoretical consis-
tency and corresponding analytical solutions of these new
objects are devised. Sec. IV presents numerical experiments
conducted on synthetic examples, that illustrate the potential
of Fractional G-SSL in terms of performance and versatility
in challenging settings for which standard G-SSL techniques
are known to perform poorly.

II. STATE OF THE ART AND RELATED WORK

A. Graph-based Semi-Supervised Learning

Problem Statement Graph-based Semi-Supervised Learn-
ing techniques aim to provide a classification of data that
possess a graph structure and a few pre-known labeled points.

To set our notations, the data is structured on a N nodes
graph, encoded by the adjacency matrix W which is positive
and symmetric, since the G-SSL framework only holds for
undirected graphs. For the sake of simplicity, we take wi,j = 1
if i and j are connected, and zero otherwise but the following
discussion can flawlessly be extended to wi,j ≥ 0 [11]. The
matrix D is the diagonal matrix whose entries are the nodes’
degrees D = diag(d1 . . . dN ) where di =

∑
j wi,j . Therefore,

the operator L = D−W in the Dirichlet form is, in the original
formulation, the Standard (or Combinatorial) Laplacian (SL)
and it is diagonalizable according to L = QTΛQ.

Further, it is assumed that the data on the graph belongs
to K classes: Y ∈ RN×K constitute the ground truth labels
embedding expert knowledge, concretely Yi,k = 1 if node i
is known to belong to class k and zero otherwise. Our target,
the F ∈ RN×K matrix, denotes the classification functions
we look for and finally, the decision rule affects node i to the
class k that satisfies argmaxkFi,k.

Our approach is based on a series of works [2]–[4] present-
ing a generalized expression for G-SSL: this generalization
comprehends the different methods, Standard and Normalized
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Laplacian (SL,NL) and Page Rank (PR) in a unique frame-
work, as we shall display in the following. This generalized
expression of the G-SSL [2] reads

min
F

{
2FTDσ−1LDσ−1F + µ (F−Y )

T
D2σ−1(F−Y )

}
.

(1)
Please note that we have dropped the indices for the sake of
notation lightness but, with F and Y , we intend the column
vectors F∗,k and Y∗,k. Therefore, as we see in Eq.1, G-
SSL aims at finding a classification function F minimizing
simultaneously a graph-dependent term, the first, and a label-
dependent one. This minimization problem can be solved
explicitly and the solution for the F functions takes the form

FT = (1− α)Y T
(
I − αDσ−1WD−σ

)−1
, (2)

where α = 2
2+µ . This result is derived in [12] and we would

like to stress that our generalization, in Sec. III, follows theirs
closely. In the present context, we focus on two specific cases
of the form (1) entailing two widely used G-SSL methods: the
Standard Laplacian (SL) and PageRank (PR).
σ = 1 - Standard Laplacian The Standard Laplacian method
can be retrieved by setting σ = 1 in (1). In this case, the
minimization problem is then cast as

min
F

{
2FTLF + µ (F − Y )

T
D (F − Y )

}
, (3)

and the expression for the F functions acquires the form

FT = (1− α)Y TD
(
I − αD−1W

)−1
D−1. (4)

σ = 0 - PageRank Another classical formulation of G-SSL,
referred to as PageRank (PR), is obtained with σ = 0. In this
setting, the regularization problem of (1) reads

min
F

{
2FTLF + µ (F − Y )

T
D−1 (F − Y )

}
, (5)

and leads to the solution F

FT = (1− α)Y T
(
I − αD−1W

)−1
. (6)

Probabilistic Framework From (4) and (6), it clearly
emerges the connection to the probabilistic interpretation of
G-SSL: the classification function F is, in fact, the result of a
random walk (RW) process. Indeed, the D−1W matrix is the
transition matrix of a RW and the operator I − αD−1W , at
the core of both solutions, governs the dynamics of a RW with
restart, the restarts occurring with probability pr = 1−α, and
starting from the ground truth labels Y . Here, it is worth noting
that the µ parameter, which calibrates the “strength” of the
ground truth knowledge labels Y in the optimization problem,
gains a new signification with the random walks appearing in
the solutions (4) and (6): the α = 2

2+µ parameter relates to the
probability pr = 1 − α of “refreshing” the initial conditions
for the walk, coded by the labels Y [13]. So, a node i will be
classified to class k if [12]∑

p∼k

dσpqpi >
∑
s∼k′

dσs qsi, ∀k′ 6= k (7)

where qpi is the (ensemble) probability that random walks
starting from labeled points p in class k reach the node i,
before reinitialization to the absorption state with pr.

B. Lévy Flights

Casting the G-SSL problem into a random walk perspective
paves the way into embedding more refined mechanisms that
have been developed in random walk theory.
There has been a recent effort to embed Lévy Flights into
random walks on graphs. In metric spaces, Lévy Flights have
generated an impressive arborescence of research for being a
vehicle of efficient and fast exploration [14]. In such spaces,
the basic mechanism is very simple: every walker can perform
jumps of length `, drawn from a probability distribution P (`).
Thus, for particular functional choices for the P (`), the walker
can perform very long jumps and the overall space exploration
benefits from these long-range transitions.
Now, the generalization of this approach is not straightforward
on networks since they are lacking an intrinsic metric to define
the “length” of a jump. To this end, various generalizations of
the diffusion operator L have been proposed:
Random Walk-like operators In order for the generalization
of L to endorse a RW interpretation, it is necessary for the
corresponding adjacency matrix to be stochastic, i.e. with non-
negative entries and the sum over the rows (or the columns) has
to be zero to entail probability conservation. The two following
operators satisfy this prescription, being RW operators:
� Lγ with 0 < γ ≤ 1 - Fractional Laplacian
In [8], it has been analytically demonstrated that the frac-

tional powers of L lead, in the 0 < γ ≤ 1 regime, to
long-range transitions on regular 1-D networks (rings). More
specifically, it was demonstrated that, on rings, the transition
probability from node i to node j (τγ)i→j ∼ d

−(1+2γ)
i,j .

Furthermore, the long-range nature of the process was shown,
by simulation, also on more general random and small-world
networks.
� L̃ ≡ D̃− W̃ - Laplacian from Biased RW
In general, with biased RW, it is possible to tailor the

transition probabilities according to some node property, like
the degree, thus introducing a bias in the way the walk is per-
formed [15]. Using this route, it is possible to plug ”by hand”
long-range transitions: this approach was explored in [7] and
it relies on the construction of a transition matrix informed by
the geodesic distances between nodes. In the first incarnation
[7], the geodesic distance was taken into account weighted by
a power β: therefore the transition probability from node i to
j is imposed a priori as τi→j = d−βi,j /

∑
k 6=i d

−β
i,k . We see that

this formulation clearly reconnects with the previous one of
the Fractional Laplacian, albeit this link could be analytically
shown just on regular networks. In [9], the latest evolution of
such long range walks implements a Mellin and Laplace-like
transform of the transition matrix informed with the geodesic
distances, and it is shown that this approach indeed entails a
more efficient diffusion as well.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 377



III. FRACTIONAL G-SSL

A. Lévy Flight G-SSL

To generalize G-SSL, we proceed to replace in the func-
tional (1) the L operator with its generalization Lγ = QTΛγQ.
We observe that, in order to recast (1) in a proper RW, we need
in the fitting term to have some consistent diagonal matrix
Dγ . Of course, when we revert to the class of Lγ operators,
the matrix Dγ which originally was just the diagonal matrix
whose entries were the degrees di has to be generalized to
(Dγ)ii = (Lγ)ii. If we consider G-SSL with the generalized
Laplacian Lγ we have to minimize the new functional S(F )

S(F ) = 2FTDσ−1
γ LγDσ−1

γ F + µ (F − Y )
T
D2σ−1
γ (F − Y )

The application of the first optimality condition DFS(F ) = 0
implies, for the solution to be a global minimum, the convexity
of the function S(F ).
Proof: To ensure that S(F ) is a positive or semi-positive
definite function, it is convenient to express Lγ in its diagonal
form Lγ = QTΛγQ, where Λ = diag(λγ0 , . . . , λ

γ
N−1). Of

course also the generalised laplacian Lγ can be written as
a diagonal component, the Dγ diagonal matrix, and a off-
diagonal one which corresponds to a new weighted adjacency
matrix (Wγ)ij = (Lγ)ij with i 6= j. Starting with the fitting
term, we have to ensure the positivity of the generalized degree
Dγ and, to this end, we use, for the sake of clarity, F = ei,
one vector of the canonical basis. We have

FT (Dγ −Wγ)F = (dγ)i − (wγ)i,i =
∑
i

QTi∗Λ
γQ∗i

=
∑
i

q2i λ
γ
i . (8)

Since (wγ)i,i = 0, we therefore obtain (dγ)i ≥ 0. The dγ
being positive, it naturally implies that their (2σ − 1) -th
power in (8) shall be as well, thus proving the semi-positivity
of the fitting term. If we now consider the Dirichelet form
FTDσ−1

γ LγDσ−1
γ F and we apply it to a general function F

decomposed on the canonical basis F =
∑
i aie

i we obtain

FTDσ−1
γ LγDσ−1

γ F =
∑
i

a2i (dγ)σ−1i QTi∗Λ
γ(dγ)σ−1i Q∗i

=
∑
i

(aiqi(dγ)σ−1i )2λγi ≥ 0 ∀F.s (9)

Since S(F ) is convex, we can proceed further and apply the
first optimality condition DFS(F ) = 0 in order to obtain the
F functions.
Proof The first optimality condition reads

2FTDσ−1
γ

(
Lγ + (Lγ)T

)
Dσ−1
γ + 2µ (F − Y )

T
D2σ−1
γ = 0

Multiplying on the R.H.S. the above equation by D1−2σ
γ

2FTDσ−1
γ

(
Lγ + (Lγ)T

)
D−σγ + 2µ (F − Y )

T
= 0 . (10)

Thus, substituting Lγ = Dγ −Wγ into the previous equation

FTDσ
γ

(
2I −D−1γ

(
Wγ + (Wγ)T

)
+ µI

)
D−σγ − µY T = 0.

Since W γ is symmetric we finally arrive to

FTDσ
γ

(
2I − 2D−1γ Wγ + µI

)
D−σγ − µY T = 0.

Therefore, we can conclude that the classification function
with the generalized standard Laplacian Lγ takes the form

FT = (1− α)Y TDσ
γ

(
I − αD−1γ Wγ

)−1
D−σγ , (11)

corresponding to the generalization of the solution for F in
(2). As before, the two cases of SL and PR give for F :
σ = 1 - Fractional SL:

FT = (1− α)Y TDγ

(
I − αD−1γ Wγ

)−1
D−1γ . (12)

σ = 0 - Fractional PR:

FT = (1− α)Y T
(
I − αD−1γ Wγ

)−1
. (13)

The solutions (12) and (13) are formally, in clear symmetry
with (4) and (6): the labels’ attribution seems to rise from
a diffusion process, driven by a new generalized ”fractional
transition matrix” D−1γ Wγ and restarted, as before, with
probability pr = 1−α. However, this interpretation just holds
in the 0 < γ ≤ 1 where, as we detail in Sec. II-B, the Wγ is a
stochastic matrix and, therefore, a random walk process is still
at play. On the other hand, in the γ > 1 regime, the nature of
Lγ changes. We develop this point in the next Section.

As a closing note, this complete symmetry between the
results in Sec. II-A and in our fractional case allows to readily
extend the classification criteria of relation (7).

B. From Lévy Flights to fractional differentiation

As we explained in Sec. II-B, the key to a Lévy Flight type
of diffusion dynamics on networks is to introduce long-range
transitions that allow to explore a larger network region than
the nearest proximity of a given node.

In our generalization of G-SSL, we have built upon the
“fractional approach”, in which the γ-th powers of L are at
play and the results in Sec. III-A hold in general for γ > 0.
It is worth noting, nevertheless, that our derivation can be
flawlessly extended to the biased random walk Laplacian L̃
we defined in Sec. II-B. However, it is important to stress that
the operator Lγ with γ > 1, albeit being a non-local operator
(as we explain in the following) does no longer imply a
random walk process: indeed, the generalized transition matrix
Wγ is not a stochastic matrix since ”negative transitions”
(Wγ)i,j ≤ 0 can occur. Therefore, in the γ > 1 regime, our
approach departs from the random-walk perspective to access
a new one, more geared towards regularization.
Differential-like operators The other facet of the Laplacian
operator is to naturally act as a differential operator: by
application on f ∈ RN , it gives (Lf)i =

∑
j wi,j(fi − fj),

which basically is a measure of the dissimilarity between fi
and its neighbors fj ∈ Vi, weighted by wi,j .
� Lγ with γ > 1 - Integer Powers of the Laplacian

Iterating the application of the Laplace operator thus leads to
a kind of (possibly fractional) high-order differential operator.
As an example, let us take L2. Defining ∆i = (Lf)i we
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have (L2f)i = (L(Lf))i =
∑
j wi,j(∆i − ∆j); thus we

are now comparing ∆i, which already accounted for node i
and its neighbors Vi, to its ”extended” neighbors ∆j , which
comprehend node j and its neighborhood Vj .

Furthermore, the Dirichlet form fTLγf endorses an in-
terpretation in terms of non necessarily low-pass filters: Wγ

containing both positive and negative entries, the functions f
that minimize the aforementioned two-form are meant to be
rapidly varying, with possibly important differences between
fi and fj . This setting contrasts with the L operator that favors
smooth functions whose differences fi − fj are small when
nodes i and j are close in the graph.

IV. NUMERICAL EXPERIMENTS

A. Lévy Flight G-SSL : 0 < γ < 1

Experimental setup We perform numerical simulations on
two classical toy examples: the Two Moons and the Two Rings
datasets depicted in Fig. 1. The datasets consist of two classes
of 1000 points each, with both classes very close in space.
For each dataset, we build a graph by means of a radial basis
function kernel of the euclidean distance, and we prune down
the complete graph to its 20-Nearest Neighbors proxy. These
topologies are challenging from a classification perspective
because the two classes, albeit easily identifiable from their
structures, are strongly intertwined. Moreover, we consider as
the ground truth delivered by experts a single labeled point
per class (identified by black dots in the Figures).

Results and discussion Fig. 1 illustrate the classification
results obtained with Lévy Flight (γ = 0.1) SL and PR on the
two datasets, while plots of Fig. 2 compare their classification
accuracies with those of standard SL and PR when the restart
probability pr varies from 0 to 1. Results are averaged over 100
independent realizations of randomly chosen labeled points.

As we can see, both standard SL and PR can achieve good
classification performance but only for pr → 0: when the
random walks have reached their stationary regime which
exclusively depends on the graph structure and is totally
oblivious of the a priori knowledge (µ→0 in form (1)).

On the contrary, Fractional SL and PR methods can achieve
comparable performances, but for reinitialization probabilities
of the random walks that privilege short duration paths and
therefore strong attachment to the a priori knowledge coded
in the labeled points.

To interpret these observations, in the regime of heavy
reliance on the ground truth labels, the diffusion of the
standard SL and PR is impeded since pr → 1 and the walk
is often rebooted. On the other hand, the fractional PR and
SL, because of the non-locality of the random walk, are able
to ensure an efficient labels diffusion, even in this regime of
high restarting probability. Therefore, fractional PR and SL
can account for the data structure itself, as standard SL and
PR, but they can efficiently cope with cases in which the
ground truth labels, provided by experts, have a strong weight,
differently from standard methods.

As a final remark, we observe that, in contrast to Fractional
SL, Fractional PR is relatively insensitive to the choice of α.

This is somehow reminiscent of similar conclusions that were
drawn in [12] regarding the behavior of standard SL and PR
when applied to less critical datasets.

Fig. 1: Two-classes problems with different topologies: Two Rings
(left), Two Moons (right). Black dots designate labeled points. Top
row: classification with standard G-SSL (pr = 0.2). Bottom row:
classification with Fractional G-SSL (γ = 0.1, pr = 0.2).

Fig. 2: Comparison of classification accuracies vs restart probability
on the two datasets (γ = 0.1 for Fractional G-SSL)

B. Fractional G-SSL : γ > 1

Experimental Setup We generate a planted partition
random graph model and use stochastic block models to form
two classes of 1000 elements each. We denote P1 and P2

the probabilities of links creation within classes 1 and 2,
respectively and P12 the interclass link probability.

Results and discussion We start setting, P1 = P2 = 0.3,
P12 = 0.05 and choosing an unbalanced number of labeled
points per class. Results are averaged over 100 realizations
of randomly chosen labeled points. Fig. 3(a) displays the
classification accuracy obtained with different values of γ for
Fractional PR (similar results were obtained with Fractional
SL). Clearly, there are two regimes: for the random walk
regime, i.e. 0 ≤ γ ≤ 1, we know from (7) that the class
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with more labeled points tends to attract the points from other
classes: this behavior persists for Fractional G-SSL.
On the other hand, for γ > 1, as explained in Sec. III-B,
fractional operators can avoid the completely smooth solution
that would lead to the spurious dominance of one class, and
they manage to distinguish the two classes even in the presence
of unbalanced labeled points. For comparison purpose, remind
that γ = 1 coincides with the standard PR method.

(a)

(b)

Fig. 3: Classification accuracy vs γ: (a) unbalanced number of labels
– (b) unbalanced link density for the Planted Partition dataset.

In our second experiment, we set P1 = 0.3, P2 = 0.1 and
P12 = 0.05, yielding unbalanced intraclass connectivities. We
chose as unique label point per class, the node with higher
degree. Fig. 3(b) stresses the extremely different reactions of
the two Fractional methods with respect to γ in this skewed
density setting: for Fractional PR, the random walk regime
(0≤γ≤1) is beneficial, at odds with Fractional SL, for which
the denser class dominates, hence, a low accuracy. In contrast,
Fractional SL recovers good accuracy for γ ∼ 2, while
Fractional PR performance steadily decreases when γ > 1.

V. CONCLUSION

In this work, we proposed a natural extension of G-SSL that
embeds random walks with non-local transitions, allowing for
a more efficient exploration of the data structure. The specific
case we address, the γ-th powers of the laplacian L, admits
a random walk interpretation in the range 0 < γ ≤ 1 and, in
the γ > 1 regime, we discussed how this operator leads to a
non-smooth solution to the regularization problem.
For the theoretical side, we display in Sec. III-A, that the
results on G-SSL keep their validity in our fractional setting.
Albeit Fractal G-SSL is not expected to outperform classical
G-SSL in most situations in terms of classification perfor-
mance, our numerical results in Sec. IV clearly point to the
capacity of Fractional G-SSL to override the graph structure,
at least to some extent: thus it is able to cope with topologically
skewed situations as non-localized classes or unbalanced con-
figurations, either in terms of connectivity or cardinality of the

classes. Moreover, this extra degree of freedom, induced by the
fractional operator, can help taming biases due to outliers or
spurious edges in the graph construction. Because they foster a
more holistic exploration of the graph, the non-local transitions
mitigate the classification proneness to obey local, misleading
interactions. As a result too, Fractional G-SSL can account
for high confidence level in the experts, by sustaining the
influence of the labeled points, while guaranteeing an efficient
label diffusion.

Finally, beyond the classification framework, it is very
likely that Fractional G-SSL, in particular their differential-like
version (γ > 1), can complement the recent attempts to apply
G-SSL techniques to inpainting problems or more generally to
signal recovery [16]. A first step towards this direction would
be to cast Fractional G-SSL within the framework of Algebraic
Graph Signal Processing as proposed in [17] or [18].
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[3] K. Avrachenkov, P. Gonçalves, and M. Sokol, “On the choice of kernel
and labelled data in semi-supervised learning methods,” in 10th WS on
Algorithms and Models for the Web Graph, Harvard U., USA, 2013.
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Doctorale STIC, Inria Sophia Antipolis, Maestro, April 2014.

[13] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th
international conference on World Wide Web. ACM, 2002, pp. 517–526.

[14] R. Klages, G. Radons, and I. M. Sokolov, Anomalous transport: foun-
dations and applications. John Wiley & Sons, 2008.

[15] R. Lambiotte, R. Sinatra, J.-C. Delvenne, T. S. Evans, M. Barahona, and
V. Latora, “Flow graphs: Interweaving dynamics and structure,” Physical
Review E, vol. 84, no. 1, p. 017102, 2011.

[16] S. Chen, A. Sandryhaila, J. Moura, and J. Kovac̆ević, “Signal recovery
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