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Abstract—Interest in risk measurement for high-frequency
data has increased since the volume of high-frequency trading
stepped up over the two last decades. This paper proposes
a multimodal extension of the Exponential Power Distribution
(EPD), called the Multimodal Asymmetric Exponential Power
Distribution (MAEPD). We derive moments and we propose a
convenient stochastic representation of the MAEPD. We establish
consistency, asymptotic normality and efficiency of the maximum
likelihood estimators (MLE). An application to risk measurement
for high-frequency data is presented. An autoregressive moving
average multiplicative component generalized autoregressive con-
ditional heteroskedastic (ARMA-mcsGARCH) model is fitted to
Financial Times Stock Exchange (FTSE) 100 intraday returns.
Performances for Value-at-Risk (VaR) and Expected Shortfall
(ES) estimation are evaluated. We show that the MAEPD
outperforms commonly used distributions in risk measurement.

Index Terms—Multimodality, Asymmetric distributions, Ex-
pected shortfall, Value-at-Risk, Risk measurement

I. INTRODUCTION

Over the two last decades, the growth of high-frequency
trading and the availability of transaction data for financial
assets led market participants to focus on intraday volatility.
Modelling and forecasting high-frequency volatility is a sub-
ject of great importance in estimation of risk measures such as
VaR and ES. Conventional GARCH models [1], [2] were run
on high-frequency data and the resulting model parameters
were not consistent between different intraday frequencies,
mostly due to the noticeable diurnal patterns of volatility
[3]. Recently, [3] developed the mcsGARCH model based
on [4]. It decomposes the volatility of price returns into
three multiplicative components, namely daily, diurnal and
stochastic. Here, we are especially interested in the estimation
of the daily component which is a daily determined forecast
volatility. To do so, a large literature exists and GARCH-
based models are efficient for daily data [5]. For daily data,
a special attention shall be paid to the innovations of the
GARCH models: their distribution exhibit high kurtosis and
left-skewness highly impacting estimation of risk measures
and therefore portfolio optimization.

Modelling these innovations has received a great interest
among practitioners and parametric estimation of their distri-
bution is conducted with distributions such as the General-
ized Hyperbolic (GHYP) [6] and Skewed Exponential Power
(SEPD) [7]-[8] distributions. Recently, Polynomial-Normal

[9] and Polynomial-t-Student distributions [10] were used to
fit the innovation of GARCH models for financial series. It
is shown that such polynomial-distributions improve perfor-
mance in risk measurement compared to their non-polynomial
counterparts. In this paper, we propose a MAEPD which
presents two different shape parameters controlling the semi-
heavy tails away and apart a location parameter. A polynomial-
like component is multiplied to manage multimodality.

The paper is organized as follows. Section II proposes
a new MAEPD and its main characteristics are exposed.
Section III is dedicated to an application of the MAEPD
distribution to risk measurement for the FTSE 100 index over
a period of two months covering "Brexit" referendum in June
2016. An ARMA-GARCH model with MAEPD innovations
is derived for mcsGARCH daily component estimation. Then,
an ARMA-mcsGARCH model with Student-t innovations is
used to forecast risk for high-frequency data. Backtesting and
comparison of performances for VaR and ES estimation under
different innovation distributions are presented. Concluding
remarks can be found in Section IV.

II. A MULTIMODAL ASYMMETRIC EXPONENTIAL POWER
DISTRIBUTION

The generalized error distribution class, initially proposed
by [11], is called Exponential Power Distribution (EPD) in
[12]. The corresponding density function is

fEPD(x|α, σ) =
1

σ
fα

[
x− µ
σ

]
where fα(x) = cα exp(−|x|α), α > 0 is the shape parameter,
c−1
α = 2Γ(1 + 1/α) and Γ is the Gamma function, µ ∈ R is

the location parameter and σ > 0 is the scale parameter.
Extension of the EPD class was first considered by [13].

Then, [14] extended the EPD class by adding a skew pa-
rameter, giving the Skewed EPD (SEPD) class. Recently, [8]
presented an Asymmetric EPD (AEPD) class in which two
kinds of asymmetry is captured. Besides of reparametrizing
the skew parameter in [14], heavy-tailedness asymmetry is
managed by two different tail exponents on different sides of
the location parameter µ. From another perspective, an interest
has risen for bimodal skewed distributions [15].
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A. Definition

This paper extends the EPD family by following the
approach in [8]. The MAEPD presents two different shape
parameters α1 and α2 controlling the semi-heavy tails away
and apart a location parameter. In [7], the asymmetry param-
eter β is defined such that the location parameter µ is the
β-quantile of the SEPD. This approach is here chosen. The
singularity of the MAEPD is the presence of a multimodal
component, which is described by the multimodality parameter
δ and the mode shape parameter ν. The MAEPD density
function fMAEPD is given by:

fMAEPD(x|η) = (1)
(
Cn(η)
σ

)(
δν+ 1

ν

∣∣∣ x−µ2σβ∗

∣∣∣ν) exp
(
− 1
α1

∣∣∣ x−µ2σβ∗

∣∣∣α1
)
, if x < µ(

Cn(η)
σ

)(
δν+ 1

ν

∣∣∣ x−µ
2σ(1−β∗)

∣∣∣ν) exp
(
− 1
α2

∣∣∣ x−µ
2σ(1−β∗)

∣∣∣α2
)
,

if x ≥ µ

where η = (α1, α2, µ, σ, β, δ, ν), α1 > 0 and α2 > 0 are
the shape parameters, σ > 0 is the scale one, β ∈ (0, 1) is
the skewness parameter, δ ≥ 0 and ν > 0 are, respectively,
the multimodality and mode shape parameters. Cn(η) and β∗

are defined as follows: Cn(η) = βC1
0 + (1 − β)C2

0 (α2) and
β∗ = βC1

0/Cn(η) where C1
0 = 1

2K0(α1) , C2
0 = 1

2K0(α2) and
Ki(α) = δνα(i+1)/α−1Γ( 1+i

α ) + 1
να

(ν+1+i)/α−1Γ( 1+ν+i
α ).

The density form (1) can be rescaled as follows:

fMAEPD(x|η) = (2)

1
σ

(
δν+ 1

ν

∣∣∣ x−µ
2σβC1

0

∣∣∣ν) exp
(
− 1
α1

∣∣∣ x−µ
2σβC1

0

∣∣∣α1
)
,

if x < µ;
1
σ

(
δν+ 1

ν

∣∣∣ x−µ
2σ(1−β)C2

0

∣∣∣ν)exp
(
− 1
α2

∣∣∣ x−µ
2σ(1−β)C2

0

∣∣∣α2
)
,

if x ≥ µ.

The density (2) is convenient to compute the information
matrix of the MLE. Figure 1 displays different plots of
fMAEPD for (µ, σ) = (0, 1) and demonstrates its potential in
accommodating shapes in terms of multimodality, skewness
and kurtosis.

B. Properties of the MAEPD

Assume that the random variable X follows a MAEPD.
We have

E(Xk) = β E(Xk|X < µ) + (1− β) E(Xk|X ≥ µ). (3)

Using integral 3.478/1 in [16], we deduce from (2) that

E(Xk|X ≥ µ)=
k∑
i=0

(
k

i

)
µk−i

(
(1− β)σ

Cn(η)

)i
Ki(α2)

K0(α2)i+1
,

E(Xk|X < µ)=
k∑
i=0

(
k

i

)
µk−i

(
βσ

Cn(η)

)i
Ki(α1)

K0(α1)i+1
,

and replacing in (3), we get E(Xk) for any k ≥ 0. Setting
E(X) = 0 leads to an expression of µ in terms of η and
setting E(X2) = 1 gives an expression of σ. Replacing µ and
σ by these expressions in fMAEPD provides a standardized

version of the MAEPD. The resulting standardized MAEPD
is used for modelling the innovations of an ARMA-GARCH
model and forecasting risk measures in Section III.

There are three sets Θ1, Θ2, Θ3 such that: η0 ∈ Θ1, η0 ∈ Θ2

and η0 ∈ Θ3 implies that fMAEPD(x|η0) has respectively one,
two and three modes.

The MAEPD has a stochastic representation, which is of
importance for simulation and performance evaluation. For
given values of parameters, generation of random numbers
from the MAEPD can be done by the following algorithm.
First, random numbers are drawn independently from the
uniform distributions U1(0, 1) and U2(0, 1) and from the
generalized gamma distribution Wα,q with density function
fGG(x) = α

σΓ(q/α) ( xσ )q−1 exp(−( xσ )α). Second, the random
variable Y is expressed as:

Y = N(U2, β) (4)[
µ− 2β∗α

1/α1

1 (Wα1,1N(U1, ω1)+Wα1,ν+1P (U1, ω1))
]

+ P (U2, β)[
µ+2(1−β∗)α1/α2

2 (Wα2,1N(U1, ω2)+Wα2,ν+1P (U1, ω2))
]

where N(U, ω) = sign(U−ω)−1
−2 , P (U, ω) = sign(U−ω)+1

2 ,
sign(x) = +1 if x > 0 and sign(x) = −1 if x ≤ 0,

ω1 =
δνα

1/α1−1
1 Γ(1/α1)
K0(α1) and ω2 =

δνα
1/α2−1
2 Γ(1/α2)
K0(α2) .

C. Parameter Estimation

Let xt, t = 1, . . . , T be a random sample from the MAEPD
f(xt|η) defined in (2). Let

L = L(xt|η) =
|xt − µ|

2α
1/α1

1 σβC1
0

1{x<µ} (5)

R = R(xt|η) =
|xt − µ|

2α
1/α2

2 σ(1− β)C2
0

1{x≥µ} (6)

Then, the log-likelihood function is expressed as ln f(xt|η) =

− lnσ − Lα1 −Rα2 + ln(δν +
α

1/α1
1 Lν

ν ) + ln(δν +
α

1/α2
2 Rν

ν )
Theorem 1: Let (Xt) be a MAEPD r.v. with density

function f(x|η0) defined in (2). We suppose that η lies in
a parameter space Θ ⊂ (0,∞)3 × (0, 1) × (0,∞)2, where Θ
is a compact set and η0 is an interior point of Θ. Then, the
MLE η̂ of η0 verifies the following properties when n→∞,

1) η̂n
a.s.−−→ η0,

2) When α1, α2, ν > 1, n1/2(η̂n − η0)
d−→ N (0,Σ), where

Σ = I−1(η0) and I(η0) is the Fisher information matrix.
Theorem 1 provides consistent estimates of VaR and ES in
the next section.

III. REAL DATA EXAMPLE

This section aims to evaluate the performance of risk mea-
sure estimation under unstable periods of time. Especially, we
analyze the VaR and ES estimation with high-frequency FTSE
data during the "Brexit" period. An ARMA-mcsGARCH
model is fitted and this method requires two steps. First, we
consider FTSE daily log-return (Y dt ) from January 1, 2013
to May 14, 2016, totalling T d = 850 daily observations. An
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ARMA-GARCH model with MAEPD innovations is fitted to
the in-sample data and one-day-ahead daily volatility forecast
σ̂dt are computed over the out-of-sample period from May
15, 2016 to July 15, 2016 (F d = 44 forecasts). Second, 1-
minute FTSE returns (Y HFt,i ) follow an ARMA-mcsGARCH
model for the in-sample period (THF = 840 observations for
each of the NHF = 24 days from May 15, 2016 to June 19,
2016). One minute-ahead VaR and ES are then estimated over
the period from June 20, 2016 to July 15, 2016 covering the
"Brexit" referendum and backtesting procedures are applied.

A. Model description

(Y dt ) is assumed to follow an ARMA(p, q)-GARCH(r, s)
model with MAEPD innovations,

Y dt =

p∑
i=1

φdi Y
d
t−i +Xd

t +

q∑
i=1

θdiX
d
t−i,

Xd
t = σdt ε

d
t , (7)

(σdt )2 = a0 +
r∑
i=1

ai(X
d
t−i)

2 +
s∑
i=1

bi(σ
d
t−i)

2,

where the polynomials φ(z) = 1 − φd1z − · · · − φdpz
p and

θ(z) = 1 + θd1z + · · · + θdqz
q have no common zeros and

neither φ(z) nor θ(z) has zeros in the closed unit disk
{z ∈ C : |z| ≤ 1}, a0 > 0, all coefficients (ai, bi)’s are
nonnegative,

∑max(r,s)
i=1 (ai+bi) < 1, and (εdt ) is a sequence of

independent and identically distributed (iid) random variables
satisfying E(εdt ) = 0 and E(εdt )

2 = 1. εdt follows a standard-
ized MAEPD distribution whose density is defined by (1).
Performance of the MAEPD in modelling daily innovations
εdt is compared to other distributions.

We compute the Bayesian information criterion (BIC) for
each ARMA(p, q) model with 0 ≤ p, q ≤ 6, and the smallest
value is -5547.277 and is obtained with (p, q) = (2, 2). In
order to avoid over-parameterization, we fit a GARCH(1,1)
model to (Xd

t ) which is usual in the financial literature.
[3] proposes a GARCH model for high-frequency intraday

financial returns called mcsGARCH. The conditional variance
is specified to be a multiplicative product of daily, diurnal,
and stochastic intraday volatility. Days are here indexed by
t = 1, ..., NHF and 1-minute intervals by i = 1, ..., THF .
Under this indexation, we note (t, i) + j the jth data point
following the one at indexed time (t, i). (Y HFt,i ) is described
by the following process:

Y HFt,i =
l∑

j=1

φHFj Y HF(t,i)−j +XHF
t,i +

m∑
j=1

θHFj XHF
(t,i)−j ,

XHF
t,i = σdt siqt,iε

HF
t,i , (8)

(qt,i)
2 = a0 +

u∑
j=1

aj(X
HF
(t,i)−j)

2 +
v∑
j=1

bj(q(t,i)−j)
2

where σdt is the daily volatility and is estimated by its forecast
σ̂dt from model (7), si is the diurnal volatility pattern , qt,i is
the intraday volatility component with E(q2

t,i) = 1 and εHFt,i

is an error term. εHFt,i follows a Student-t distribution. High-
frequency FTSE data exhibit symmetry and its size leads us to
choose a distribution with a small number of parameters. The
model is estimated into two steps. First, the diurnal component
si is estimated by

ŝi
2 =

1

NHF

NHF∑
t=1

(XHF
t,i )2

(σ̂dt )2
(9)

Second, zt,i =
XHFt,i
σ̂dt si

is modelled as a GARCH(u, v) process
where (u, v) = (1, 1). We compute the Bayesian information
criterion (BIC) for each ARMA(l,m) model with 0 ≤ l,m ≤
6, and the smallest value is 208476.1 and is obtained with
(l,m) = (3, 1).The MLE of both model parameters is con-
ducted using the source code of the R package rugarch [17].

B. Backtesting
Backtesting risk measure models consists in designing

statistical tests to compare actual losses and VaR or ES
calculations. For each trading minute (t, i), the value at risk
VaRt,i

α at the probability level α, 0 < α < 1, is the α-
quantile of (zt,i), with a negative value corresponding to a
loss. Equivalently,

Pr(zt,i ≤ VaRt,i
α ) = α. (10)

The null hypothesis in the unconditional coverage test of
Kupiec (UC) is that the exception rate α̂ obtained from
model (8) is equal to the true probability level α, see [18].
Replacing the unknown parameters η by their MLE η̂T ob-
tained from (zt,i) with (t, i) = (1, 1), . . . , (NHF , THF ) in the
expression of VaRα, we get VaRα(η̂T ) and α̂ is estimated
by e/n where e =

∑(Fd,THF )

(t,i)=(NHF ,THF )+1
1zt,i<VaRα(η̂T ) and

n = (F d − NHF )THF is the number of out-of-sample
observations. The likelihood ratio LRUC is

LRUC = −2 ln

(
(1− α)n−e αe

(1− e/n)n−e (e/n)e

)
.

Under the null hypothesis, LRUC is asymptotically distributed
with a χ2

1 distribution.
The conditional coverage test of Christoffersen (CC) adds a

test for independence (ind) to the unconditional coverage one,
see [19]. The null hypothesis in the test for independence is
then π01 = π11 where πij denotes the conditional probability
of condition j assuming that condition i occurred on the
previous day. Condition "1" means that an exception occurs
and condition "0", no exception. π01 and π11 are estimated by

π̂01 =
n01

n00 + n01
, π̂11 =

n11

n10 + n11
.

where nij denotes the number of minutes when the sequence
ij occurs. The likelihood ratio LRind is

LRind = −2 ln

(
(1− e

n )n00+n10 e
n
n01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
The quantity LRCC = LRUC + LRind is asymptotically dis-
tributed with a χ2

2 distribution and is used to measure the
conditional coverage performance of the model.
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The ES at the probability level α is

ESt,iα =
1

α

∫ α

0

VaRt,i
p dp (11)

and coincides with the Conditional Value-at-Risk CVaRt,i
α

defined by

CVaRt,i
α = E[zt,i | zt,i < VaRt

α], (12)

since the MAEPD distribution is continuous, see [20].
The ES backtesting procedure is the one presented in [21].

This procedure presents a coverage test for any spectral risk
measure such as ES. The null hypothesis for the Spectral Risk
Measure Coverage Test is that the exception rate α̂ obtained
from model (8) is equal to the true probability level α. The
Z-score ZnESα

is

ZnESα =
√

3n
2X

n

ESα − α√
α(4− 3α)

.

where

X
n

ESα =
1

n

(Fd,THF )∑
(t,i)=(NHF ,THF )+1

1

α

∫ α

0

1{zt,i≤VaRp(η̂T )} dp.

Under the null hypothesis, ZnESα
is asymptotically distributed

with a normal distribution.
The three above-mentioned backtests are conducted to eval-

uate the performance of the MAEPD in estimating the daily
volatility component in model (8). To do so, both model (7)
and (8) are refitted every day. The likelihood ratios LRUC

and LRCC and the Z-score ZnESα
are displayed in Table I.

Other distributions commonly used in finance -namely GHYP,
Skewed Student-t (SSTD) and Skewed Generalized Error
(SGED) Distributions- can describe εdt in (7) and enable
to compare the performance of the model depending on
the innovations. We rank the performance of the models
according to their Z-score/Likelihood Ratio and the closest Z-
score/Likelihood Ratio to zero corresponds to the best model.

TABLE I: Backtesting VaR and ES for the MAEPD, GHYP, SSTD
and SGED distributions.

Dist Score VaR1% VaR2.5% ES1% ES2.5%

MAEP
LRUC 0.479 0.409 - -
LRCC 2.366 5.245 - -
ZnESα

- - 2.005* 1.191

GHYP
LRUC 0.846 0.543 - -
LRCC 6.511* 6.403* - -
ZnESα

- - 2.106* 1.245

SSTD
LRUC 0.479 0.543 - -
LRCC 4.184 6.403* - -
ZnESα

- - 2.08* 1.252

SGED
LRUC 0.991 0.409 - -
LRCC 4.412 5.245 - -
ZnESα

- - 2.149* 1.29

* Rejection at the 5% significance level.

The MAEPD distribution shows the best performance in
terms of ES and VaR estimation compared to commonly
used distributions in risk measurement in this unstable context.
For the MAEPD, only the hypothesis for ES1% estimation is
rejected at the 5% significance level.

IV. CONCLUSION

The paper aimed to define a multimodal extension of the
EPD, the MAEPD. We derive moments and we propose a
convenient stochastic representation of the MAEPD. We es-
tablish consistency, asymptotic normality and efficiency of the
MLE. An application to risk measurement for high-frequency
data is given and time series analysis through the mcsGARCH
model exhibit good performance.
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Fig. 1: Density function of MAEPD(α1, α2, µ, σ, β, δ, ν)
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