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Abstract—Adaptive radar detection and estimation schemes
are often based on the independence of the training data used
for building estimators and detectors. This paper relaxes this
constraint and deals with the non-trivial problem of deriving
detection and estimation schemes for joint spatial and temporal
correlated radar measurements. In order to estimate these two
joint correlation matrices, we propose to use the Vector ARMA
(VARMA) methodology. The estimation of the VARMA model
parameters are performed with Maximum Likelihood Estimators
in Gaussian and non-Gaussian environment. These two joint
estimates of the spatial and temporal covariance matrices leads
to build Adaptive Radar Detectors, like Adaptive Normalized
Matched Filter (ANMF). Their corresponding performance are
analyzed through simulated datasets. We show that taking into
account the spatial covariance matrix may lead to significant
performance improvements compared to classical procedures
ignoring the spatial correlation.

I. INTRODUCTION

In many applications, data can be viewed as a joint spatial
and temporal process. For example, in meteorology sets of
rainfall measurements can be collected from a number of
different sites over a period of time [1], [2]. In radar and
imagery applications, this view point can be of high interest.
For high resolution radar, the sea clutter is clearly jointly
spatially and temporally correlated [3]. In multichannel (po-
larimetric, interferometric or multi-temporal) SAR imaging,
the multivariate vector characterizing each spatial pixel of the
image is correlated over the channels but can also be strongly
correlated with those of neighbourhood pixels. Finally, the
need of simulating doubly correlated temporal and spatial
process is of importance. In the radar community, one gen-
erally supposes that the vectors of information collected over
a spatial support are identically and independently distributed
(IID). This strong assumption allows to build easily Maxi-
mum Likelihood Estimators of parameters like for example,
covariance matrix required for adaptive detection, leading to
overestimated performance of such detectors. The aim of this
paper is to relax this hypothesis through the use of space-
time autoregressive and moving average vector models in the
context of wide radar applications.

The vector ARMA (VARMA) model has been widely used
for modeling the temporal or spatial dependence structure
of a multivariate discrete signal. Unlike scalar signals, the
temporal or spatial dependence of a vector signal consists of

not only the serial dependence within each marginal signal,
but also the interdependence across different marginal signals.
The VARMA model is well suited to represent such temporal
dependence structures. More precisely, (yk)k∈Z is an m-
variate zero-mean VARMA(p, q) model if (yk) satisfies the
difference equation

yk −
p∑

i=1

Φiyk−i = ck +

q∑
i=1

Θick−i, (1)

where Φ1, . . . ,Φp,Θ1, . . . ,Θq are real or complex m × m
matrices and (ck) is a sequence of IID m-variate zero-mean
vectors with non-degenerate covariance matrix Σc charac-
terizing the temporal dependence of its components. There
are exisiting works that concern only the autoregressive (AR)
modelisation of the spatio-temporal correlations between the
clutter [4], [5], [6]. This implies simplifications since the
CMLE has a closed form expression in this case. However,
the AR model does not necessarily reflect the true correlation
structure and it is interesting to study the dual model which
is the MA model. The process (ck) associated to radar clutter
returns for example can be non-Gaussian and have for instance
a Complex Elliptically Symmetric (CES) distribution [7]. The
matrices Φi and Θi satisfies some constraints to guaranty the
existence, uniqueness, causality and invertibility of a solution
(yk) to (1), see e.g. [8]. The estimation of gaussian VARMA
models in the space domain by maximizing the likelihood
and in the space-frequency domain by maximizing the so
called Whittle’s approximation to the Gaussian likelihood is
considered by [9] and [10], see also [11]. In radar detection
schemes, covariance or scatter matrix estimation (for CES
distributed clutter) is a fundamental problem. To estimate the
scatter matrix of any observed vector under test y (primary
vector on dimension m), generally it is supposed to dispose
of K > m secondary IID vectors (training data) that share
with the primary vector the same statistical characteristics [12],
[13]. In some applications, as in high spatial resolution radars,
the hypothesis of independence (or even of uncorrelation) of
the secondary vectors is seldom satisfied due to the nature of
the phenomenon at hand. Particularly, for target detection pur-
poses, due to the lack of knowledge of the spectral characteris-
tic of the clutter and the variability of it on long periods of time
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Fig. 1. Pfa − λ plot and the corresponding Pd-SNR relationship for Pfa = 10−2 for spatially non correlated Gaussian clutter (m = 16, ρ = 0.5). (a), (b)
K = 32. (c), (d) K = 48.

and large surfaces, the covariance matrix of the clutter must
be estimated and plugged into adaptive detectors in both cases
of Gaussian (Adaptive Matched Filter, Kelly detector) and
non-Gaussian distributed disturbance (Adaptive Normalized
Matched Filter). Recent works have also considered spatial
correlation [14], [15], [16].

In this paper we assume that the clutter is jointly tem-
porally and spatially correlated. These correlations are mod-
eled through a VARMA process for both Gaussian and non
Gaussian signals [17]. Solving this problem can improve the
performance of detection. We propose to use the well-known
Gaussian Maximum Likelihood (ML) estimator [17] and we
extend this formulation for non Gaussian ML formulation
in the case of CES innovations. This paper is organized
as follows. Section 2 gives a summary of radar detection
background and states the problem. Section 3 is dedicated
to the estimation of the parameters in the Gaussian case.
Section 4 presents the detailed steps of Maximum Likelihood
Estimators (MLE) formulation in the non Gaussian case. Sec-
tion 5 gives some results and discussions about the effect of the
spatial and temporal clutter correlations on the radar detection
performances through simulated datasets. Conclusions and
perspectives are presented in section 6.

II. RADAR DETECTION BACKGROUND

In radar detection theory, the detection problem can be
stated as a classical binary hypothesis testing. A received
complex clutter observation y is considered as a target-free
signal (H0 hypothesis) or a signal containing the target (H1

hypothesis) as follows,{
H0 : y = c yk = ck, k = 1, . . . ,K
H1 : y = αp + c yk = ck, k = 1, . . . ,K

, (2)

where y is the m-vector observed signal, ck is complex
secondary data, assumed to be independent, α is the unknown
complex target amplitude and p denotes a known steering
vector [18]. The goal of the detection theory is to decide
between these two hypotheses and the corresponding detection
test performance is analyzed through the false alarm proba-
bility Pfa and the probability of detection Pd behaviors. As
we propose in this paper to compare performances both in
Gaussian and non-Gaussian clutters, we will focus on the
well known Normalized Matched Filter (GLRT in partially

homogeneous Gaussian clutter [19], approximated GLRT in
non-Gaussian CES clutter [20]) defined by

ΛANMF =

∣∣∣pHM̂
−1

y
∣∣∣2(

pHM̂
−1

p
)(

yHM̂
−1

y
) H1

≷
H0

λ, (3)

where λ is the detection threshold and where M̂ stands for
any estimator of the covariance matrix M of y. Due to
the joint temporal and spatial correlations characterizing the
clutter, this estimation is crucial for improving the detection
performance. For this reason we attempt in this paper to use a
simple adequate time series model that takes into account the
spatial correlation of the observed data in order to improve
the estimation accuracy. The chosen model is a VARMA(0,1),
i.e. each secondary data is correlated only with the previous
secondary data, which leads to the following model where ck
is the innovation and Θ1 is a matrix coefficient,

yk = ck + Θ1ck−1, k = 1, . . . ,K. (4)

In the following, we propose to analyze the effect of varying
the data distribution structure (independent or spatially corre-
lated) on the radar detection performance under Gaussian and
non-Gaussian assumptions. Since the sequence (ck) is zero-
mean and IID, the covariance matrix M = E(yky

H
k ) in (4)

satisfies

M = E(ckc
H
k ) + Θ1E(ckc

H
k )ΘH

1 = Σc + Θ1ΣcΘ
H
1 . (5)

III. GAUSSIAN CASE

Here, we assume that the observations yk follow a Gaussian
distribution and we analyze the two cases where the data are
either independent or follow a VARMA(0,1) model.

A. Independent observations

For the rest of this paper, let Y =
(
yT
1 ,y

T
2 , . . . ,y

T
K

)T
. For

independent Gaussian distributed data, the likelihood function
L1(Y ,M) is given by

L1(Y ;M) =
1

πmK |M |K
exp

(
−

K∑
k=1

yH
k M−1yk

)
, (6)
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Fig. 2. Pfa −λ plot and the corresponding Pd-SNR relationship for Pfa = 10−2 for spatially VARMA(0,1) correlated Gaussian clutter (m = 16, ρ = 0.5,
Θ1 = 0.9Im). (a), (b) K = 32. (c), (d) K = 48.

where |M | = det(M). The maximum of L1(Y ;M) with
respect to M is the well-known Sample Covariance Matrix
(SCM) M̂SCM given by

M̂SCM =
1

K

K∑
k=1

yky
H
k . (7)

B. VARMA(0,1) observations

The VARMA(0,1) model (4) is specified by the covariance
matrix Σc of the innovations ck and the coefficients matrix
Θ1. The estimation techniques of these parameters are based
on the conditional or the exact MLE [17].

1) Conditional likelihood function: The conditional MLE
is obtained by assuming that c0 = 0. It follows from (4) that
C =

(
cT1 , c

T
2 , . . . , c

T
K

)T
is related to Y by C = TY where

T =


Im 0m . . . 0m

−Θ1 Im . . . 0m

(−Θ1)2 −Θ1 . . . 0m

...
...

. . .
...

(−Θ1)K−1 (−Θ1)K−2 . . . Im

 . (8)

Since the innovations ck are IID and det(T ) = 1, the
conditional likelihood function of Y is

L2(Y ; Θ1,Σc) =
1

πmK |Σc|K
exp

(
−

K∑
k=1

cHk Σ−1c ck

)
. (9)

We denote by Θ̂
G

1,CML and Σ̂
G

c,CML the values of Θ1 and Σc

which maximize (9), and we denote by M̂
G

CML the value of
M obtained by replacing respectively Θ1 and Σc by Θ̂

G

1,CML

and Σ̂
G

c,CML in (5).
2) Exact likelihood function: The different steps in com-

puting the exact likelihood function are similar to the ones
described in the conditional case except that we must estimate
the value of the initial innovation c0. Similarly to the con-
ditional case, we observe that the determinant of the matrix
relating the observations to the innovations is equal to one,
and then the joint Probability Density Function (PDF) of the
observations yk is equal to the product of the PDF’s of the
innovations, i.e.,

p(c0,y1,y2, . . . ,yK) =
K∏

k=0

p(ck). (10)

The exact likelihood function L3(Y ; Θ1,Σc) is obtained by
integrating (10) out c0. It was shown in [17] that

L3(Y ; Θ1,Σc) =
exp (−(Ỹ − X̃ĉ0)H(Ỹ − X̃ĉ0))

π|Σc|K |X̃
H
X̃|

, (11)

where c0, X̃ and Ỹ depend only on the observations and Σc

and Θ1. We denote by Θ̂
G

1,EML and Σ̂
G

c,EML the values of Θ1

and Σc that maximize (11). From these estimated matrices we
compute M̂

G

EML using (5). The exact procedure is particularly
computationally expensive to solve when Σc is not structured
(m × (m + 1)/2 elements to estimate). In this paper, we
have solved the problem when Σc has a Toeplitz structure
depending on only one parameter.

As the sample size tends to infinity, the conditional MLE’s
Θ̂

G

1,CML and Σ̂
G

c,CML, and the exact MLE’s Θ̂
G

1,EML and

Σ̂
G

c,EML both converge almost surely to the true values Θ1

and Σc. But their finite sample behaviours may be different,
especially in the case of small datasets.

IV. NON GAUSSIAN CASE

In real measurements, the clutter is often non-Gaussian
distributed. One of the main class of these non Gaussian
statistical models is the compound Gaussian processes (CES
subclass). The random vector ck is compound Gaussian if
ck =

√
τkxk where τk is a positive random variable called

texture which measures the variability of the local power of
the received signal, and xk is a m-dimensional zero-mean
Gaussian vectors with covariance matrix Σx called speckle,
and τk and xk are independent. We assume in the following
that the clutter texture is Gamma distributed. Since the texture
and the speckle are independent, the covariance matrix of the
data ck is simply given by Σc = E(τk)Σx. For identifiability,
we assume that E(τk) = 1. In the following, we investigate
the case where the data are either independent or follow a
VARMA(0,1) model.

A. Independent observations

In this case, yk = ck =
√
τkxk which gives M = Σc. The

conditional PDF of yk conditionally to τk is

p(yk|τk) =
1

πm|M |τmk
exp

(
−yH

k M−1yk

τk

)
. (12)
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Fig. 3. Pfa−λ plot and the corresponding Pd-SNR relationship for Pfa = 10−2 for spatially non correlated compound Gaussian clutter (ν = 0.5, m = 16,
ρ = 0.5). (a), (b) K = 32. (c), (d) K = 48.

The value of τk that maximizes p(yk|τk) is τ̂k =
cHk Σ−1c ck/m = yH

k M−1yk/m, see e.g. [21]. Replacing τk
by τ̂k in (12), we get

L4(Y ;M) =
K∏

k=1

mm exp(−m)

πm|M |(yH
k M−1yk)m

. (13)

The partial derivative of (13) with respect to M leads to the
Tyler’s estimator [22] which is defined as the unique solution
of the following fixed point equation

M̂FP =
m

K

K∑
k=1

yky
H
k

yH
k M̂

−1
FPyk

, (14)

and it can be noticed that this estimate does not depend on
the texture.

B. VARMA(0,1) observations

We assume that yk satisfies (4) where ck is compound
Gaussian, and we investigate the conditional MLE’s of Θ1

and Σc obtained by assuming that c0 = 0. The conditional
PDF of ck conditionally to τk, p(ck|τk) is given by (12) where
yk is replaced by ck. Replacing τk by τ̂k = cHk Σ−1c ck/m in
p(ck|τk) and using the same arguments as in Section III-B1,
we obtain the conditional likelihood function of Y ,

L5(Y ; Θ1,Σc) =

K∏
k=1

mm exp(−m)

πm|Σc|(cHk Σ−1c ck)m
. (15)

Since C = TY where T is given by (8) and involves only Θ1,
the maximum of (15) with respect to Σc is Σ̂c,FP given by
(14) where M̂FP is replaced by Σ̂c,FP. Then, replacing Σc by
Σ̂c,FP in (15) and maximizing with respect to Θ1, we obtain
Θ̂

CG

1,CML. Replacing respectively Θ1 and Σc by Θ̂
CG

1,CML and

Σ̂c,FP in (5), we obtain M̂
CG

CML.

V. RESULTS AND DISCUSSIONS

We have evaluated here both the conditional/exact likelihood
functions in Gaussian and in non-Gaussian cases for simulated
independent or correlated data. All the results are given with
m = 16 and K = 32 and 48 respectively and they are
presented with n = 104 Monte Carlo measurements. In the
case of Gaussian assumption, we maximize the likelihood
functions L1, L2 and L3 with respect to Σc and Θ1 simultane-
ously. Whereas in the case of non Gaussian estimations, only

the maximization with respect to Θ1 is performed since the
optimal covariance matrix Σ̂c is reached with the fixed point
algorithm. For the exact likelihood function, the optimization
is initialized with initial values Θ1,0 and Σc,0 obtained from
the Yule Walker estimator after transforming the VARMA(0,1)
model to a Auto Regressive (AR) one [17]. As previously dis-
cussed in section III in order to reduce calculation complexity,
we assume here that the matrix Θ1 is a diagonal one and that
the innovation covariance matrix Σc has a simple Toeplitz
structure (Σc)i,j = ρ|i−j| for i, j ∈ [1,m] with ρ = 0.5.

A. Estimation in Gaussian environment

The performance of ANMF (3) is evaluated in spatially
uncorrelated and correlated Gaussian environments for four
covariance matrix estimates: the benchmark (M is known),
the SCM M̂SCM, the VARMA(0,1) conditional likelihood
estimate M̂CML and the VARMA(0,1) exact one M̂EML.
For each detector, we plot the relationship between Pfa and
the detection threshold λ. Defining the Signal to Noise Ratio
(SNR) as α2pHM−1p, these detectors are evaluated in terms
of Pd-SNR performance for Pfa = 10−2. Figure 1 shows the
corresponding results for K = 32 and K = 48. In this figure
we can notice that the exact likelihood function calculated for
VARMA(0,1) data gives best detection performance (except
for benchmark). This is explained by the fact that since the
covariance matrix Σc of the innovations has a specific Toeplitz
structure, we maximize the exact ML function with respect to
the factor ρ (only one parameter to estimate). This choice allow
to speed-up the maximization task due to the simple Toeplitz
structure of the estimated Σ̂c. The performance related to the
conditional likelihood tends here to have the same performance
as SCM. The figure 2 shows the case of spatially correlated
VARMA(0,1) data for Θ1 = 0.9Im. In this figure, the
conditional likelihood detector has better performance than the
SCM one. This is explained by the fact that the SCM estimator
does not take into account the spatial correlation of the clutter.
Again, we can notice that the exact likelihood estimator gives
the nearest results to the optimal benchmarks obtained by the
theoretical covariance matrix M but this is always due to
the optimization constraint we have imposed to the particular
Toeplitz matrix.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1113



0 0.2 0.4 0.6 0.8 1

λ

10
-4

10
-3

10
-2

10
-1

10
0

P
fa

M

M̂FP

M̂
CG

CML

-10 0 10 20 30

SNR (dB)

0

0.2

0.4

0.6

0.8

1

P
d

M

M̂FP

M̂
CG

CML

0 0.2 0.4 0.6 0.8 1

λ

10
-4

10
-3

10
-2

10
-1

10
0

P
fa

M

M̂FP

M̂
CG

CML

-10 0 10 20 30

SNR (dB)

0

0.2

0.4

0.6

0.8

1

P
d

M

M̂FP

M̂
CG

CML

(a) (b) (c) (d)

Fig. 4. Pfa−λ plot and the corresponding Pd-SNR relationship for Pfa = 10−2 for VARMA(0,1) spatially correlated compound Gaussian clutter (ν = 0.5,
m = 16, ρ = 0.5, Θ1 = 0.9Im). (a), (b) K = 32. (c), (d) K = 48.

B. Estimation in compound Gaussian environment

The performance of ANMF (3) is evaluated in spatially
uncorrelated and correlated compound Gaussian data environ-
ment. Instead of the SCM estimate, we use here the Tyler’s
estimator of the innovations covariance matrix as given in
(14). The figure 3 shows the Pfa and the Pd values for both
Tyler’s and conditional ML estimate of the covariance matrix
for K = 32 and K = 48. We can observe that the Tyler’s
estimator is a little bit better than the conditional ML one
for small number of observations (K = 32). The second
dataset have been generated under highly spatially correlated
VARMA(0,1) model with Θ1 = 0.9Im. As in the case of
the Gaussian data, the spatial correlation characterizing the
clutter disrupts the accuracy of the Tyler’s estimator and the
conditional ML gives slight better performance as illustrated
in figure 4.

VI. CONCLUSION

In this paper, we proved that the spatial correlation char-
acterizing the clutter secondary data could be exploited to
enhance the performance of detection. This enhancement takes
place in simulated Gaussian distributed data through a max-
imization of both conditional and exact likelihood functions
to estimate the data covariance matrix. In the case of non
Gaussian distributed clutter, the conditional ML gives a con-
siderable improvement of the quality of detection with respect
to the classical Tyler’s estimator. The success of this estimator
will motivate us to test it on real radar datasets and to estimate
the covariance matrix by calculating the non-Gaussian exact
likelihood function.
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