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Abstract—The analysis of finite wordlength effects in linear
digital networks requires specifying the exact order in which
all the internal computations are performed, as well as the
type and resolution of all the quantizers. Popular digital fil-
ter descriptions (difference equations, transfer function, state
space representation, etc.) are unable to provide a bit-true
description valid for any filter structure, thus preventing most
of the results in the literature from being truly reproducible.
Furthermore, the quantizers are often not properly described.
In this work, we introduce a novel and compact framework
to describe unambiguously any single-input single-output (SISO)
linear digital network. The proposed approach is simple, efficient
and guarantees the reproducibility of the results obtained for
any network by allowing us to describe in detail the data flow
as well as the quantization of all the coefficients and operations
performed. An example of a third order Butterworth filter with
four different implementations is provided to show the descriptive
power and flexibility of the proposed approach.

I. INTRODUCTION

The reproducibility of the results presented in scientific
works by researchers is essential to gauge the performance
of the different approaches proposed. For this reason, re-
producible research is currently being highly emphasized in
many fields like signal processing [1], biostatistics [2], or
computational science [3]. In linear digital networks, finite
wordlength (FWL) effects occur when these networks are
implemented using fixed point arithmetic [4], and many works
have been devoted to the analysis of FWL effects. Repro-
ducible analysis of FWL effects in linear digital networks
requires specifying the exact order in which all the internal
computations are performed, as well as the type and resolution
of all the quantizers. However, most works do not contain all
the information that an independent researcher would require
to reproduce the results presented with little effort.

In this work, we introduce first a compact single matrix
representation of the network’s structure. This description,
which is based on [5], allows us to specify unambiguously the
data flow (i.e., the order of all the operations performed by the
network). Then, another quantization matrix is introduced to
specify all the quantizers (i.e., their type and resolution) used in
the network’s implementation. Altogether, these two matrices
allow us to perform completely reproducible simulations of
the error propagation through the network, an issue which is
essential to analyze the effect of FWL effects.

The paper is structured as follows. Firstly, in Section
II we briefly review some of the proposed alternatives for
describing linear digital networks. Then, we describe in detail
the proposed framework in Section III and a case study (a

third order Butterworth filter with four different implemen-
tations) is presented in Section IV. The description of all the
implementations is provided and used to analyze their behavior
w.r.t. the number of quantization bits used. Finally, the main
contributions of this work and some potential future lines are
summarized in Section V.

II. DESCRIPTION OF LINEAR DIGITAL NETWORKS

The fixed point implementation of linear digital networks
causes the appearance of many undesirable finite wordlength
effects: quantization noise, deviation from the desired fre-
quency response due to coefficient sensitivity, zero-input limit
cycles, etc. [4]. In order to ensure the reproducibility of
the results, the analysis of finite word length (FWL) effects
requires specifying the exact order in which all the internal
computations are performed, as well as the type and properties
of all the quantizers. One of the most popular approaches
for describing single-input single-output (SISO) linear digital
networks is the state-space formulation [6]:

v[n+ 1] = Av[n] + bx[n], (1)
y[n] = c>v[n] + dx[n], (2)

where x[n] is the input sequence, y[n] is the output, v[n] is
the M × 1 state vector, A is the M ×M state matrix, b is
the M × 1 input weight vector, c is the M × 1 output weight
vector, and d is a feedforward constant term.

Unfortunately, the state-space formulation does not provide
a precise description of the network’s implementation (a given
state-space formulation can be implemented using many com-
pletely different structures) and is unable to describe structures
where the next state depends on the current state of other
internal nodes. In order to overcome these limitations, some
alternative formulations have been proposed (cf., [4], [6]). One
of the most commonly used considers a P × 1 (P ≥ M )
“extended” state vector, w[n], that includes the internal nodes
and the outputs [7]. Making use of w[n], Eqs. (1) and (2) can
be expressed more compactly as

w[n+ 1] = ex[n] + Fw[n+ 1] +Gw[n], (3)

where e ∈ RP×1, F ∈ RP×P and G ∈ RP×P . This
formulation allows us to express the dependence of the next
state on the values of internal nodes explicitly and is closer to
the actual implementation of the filter, but does not result in
an automatic implementation yet.

Some additional formulations for the detailed description of
generic linear digital network structures have been developed
(see, e.g., [8]), but they are all based on several matrices,
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and thus complex and difficult to use. A more compact single
matrix representation, based on Eq. (3) and leading directly to
a practical implementation, has been recently proposed [5]. In
this paper, we first simplify the network description provided
in [5], and then extend it by incorporating a quantization
matrix that describes precisely all the quantizers used. These
two matrices, altogether with the precise specification of the
input, provide a compact and unambiguous representation of
any SISO linear digital network that allows us to analyze the
effects of FWL effects, as detailed in the following section.

III. PROPOSED FRAMEWORK

A. Network Description

First of all, let us remark that e, F and G are typi-
cally sparse, with non-zero elements only in the positions
corresponding to connections among elements in the network.
Hence, following the approach of [5], a compact representation
can be obtained using a single matrix that contains only the
relevant information about those connections. In the sequel,
we describe a simplified version of [5], where redundant terms
have been removed.

Let us consider a generic SISO linear digital network. This
network can only be composed of multipliers, accumulators
and delay elements. The proposed approach starts by number-
ing the different nodes in the following way:

• The first M nodes (1, . . . ,M ) are assigned to the out-
puts of the memory cells (i.e., delay nodes), beginning
by the outermost output when several delay nodes are
connected in series.

• The following node (i.e., the (M +1)-th node) corre-
sponds to the input.

• The final L = P − (M + 1) nodes (M + 2, . . . , P =
M+L+1) are assigned to the outputs of internal nodes
that do not correspond to delay units (i.e., outputs of
multipliers or accumulators), starting from those closer
to the inputs and proceeding towards the outputs.

• The last node (i.e., the P -th node) is the output node.

Following these simple rules, we can ensure the com-
putability of the resulting network, which can be described
compactly by using a single network matrix,

N =

[
G̃

F̃

]
, (4)

composed of two sub-matrices. First of all, G̃, is the M × 3
matrix containing the input-output relationship of the delay
elements,

G̃ =


1 i1 1
2 i2 1
...

...
...

M iM 1

 , (5)

where the m-th row of G̃ (1 ≤ m ≤M ) implies that wm[n+
1] = wim [n], as shown in Fig. 1(a). Then, F̃ is the K × 3

(a)

(b)

(c)

Fig. 1. Basic building blocks of a linear network. (a) Delay element. (b)
Multiply and accumulate (MAC) operation. (c) MAC with quantizers included.

matrix containing the internal connections to non-delay units,

F̃ =



M + 2 iM+2 gM+2

...
...

...
M + ` iM+k gM+k

M + ` iM+k+1 gM+k+1

...
...

...
M + L+ 1 iM+K+1 gM+K+1


, (6)

where the rows in F̃ containing the same node in the first
column refer to each of the branches in the accumulator used
to obtain the value of that node, and K ≥ L is the total number
of branches in the internal multipliers and accumulators of the
linear network. For instance, the two middle rows in (6) with
M + ` in the first column encode the MAC operation shown
in Fig. 1(b), whose output is

wM+`[n+1] = gM+kwiM+k
[n+1]+gM+k+1wiM+k+1

[n+1].

B. Quantizers and Filtering

In order to be able to perform truly reproducible FWL
simulations of the network under study, we need to specify
all the quantizers used. For this purpose, we introduce the
following quantization matrix,

Q =


q11 q12 q13

...
...

...
qk1 qk2 qk3

...
...

...
qK1 qK2 qK3

 , (7)
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Fig. 2. Second order IIR filter implemented using direct form II.

where the first column specifies the quantizers for the outputs
of each of the internal nodes, the second column defines the
quantizers used for each of the inputs, and the third column the
quantizers used for the coefficients (gains). For instance, the
structure represented in Fig. 1(c) corresponds to the following
portion of the F̃ and Q matrices.

F̃ =


...

...
...

m i α
m j β
...

...
...

 Q =


...

...
...

qa qb qc
qd qe qf
...

...
...

 .
From a mathematical point of view, the output in Fig. 1(c)
would be given by

wm[n+1] = qa(qb(wi[n+1])qc(α))+qd(qe(wj [n+1])qf (β)).

As a second example, consider the classical second order
IIR filter implemented using direct form II shown in Fig. 2.
The network and quantizer matrices for this network are the
following:

F̃ =



1 2 1
2 4 1
4 3 k
4 2 −a1
4 1 −a2
5 4 b0
5 2 b1
5 1 b2


Q =


q11 q12 q13
q21 q22 q23
q31 q32 q33
q41 q42 q43
q51 q52 q53
q61 q62 q63

 .

Note that each of the elements in (7) is not a single number,
but a quantizer structure that specifies the quantizer’s type
and properties. In our implementation of the filters we use
the quantizer object generated by Matlab’s quantizer function,
which allows us to specify precisely many types of quantizers
(including the option ’double’ that we use to simulate the
absence of a fixed point quantizer) and any desired resolution.1
Table I shows the Matlab implementation of the filtering
function that automatically reads the network and quantization
matrices and computes the output for a given input sequence.

1Note that, although we have used Matlab for the simulations, the proposed
framework is very general and can be easily integrated within any software
that allows the use of quantizers.

TABLE I. MATLAB FILTERING IN THE PROPOSED FRAMEWORK.

[y, cf] = filterNq(N, x, ci, Q)

% y : Output vector.
% cf : Final state of the network.
% N : Network matrix.
% x : Input vector.
% ci : Initial state of the network.
% Q : Quantizer matrix.

L = max(N(:,1));
w = zeros(L,1);
m = length(find(N(:,1)-N(:,2) < 0));
w([N(1:m,2)]) = ci;

for k = m+1:size(N,1)
if N(k,3) ∼= 1

N(k,3) = quantize(Q(k-m,3),N(k,3));
end

end

for n = 1:length(x)
w(1:m) = w([N(1:m,2)]);
w(m+1) = x(n);
w(m+2:end) = 0;
for k = m+1:size(N,1);

w(N(k,1)) = w(N(k,1)) + . . .
quantize(Q(k-m,1),N(k,3) * quantize(Q(k-m,2),w(N(k,2))));

end
y(n) = w(end);

end

cf = w(1:m);

IV. NUMERICAL SIMULATIONS

In this section we present two case studies. In the first
example, we compare four different implementations of the
same third-order Butterworth filter, studying their performance
as the number of bits is allowed to increase. In the second
example, we estimate the frequency response and the noise
power spectral density of the FWL implementation of the
second-order system studied in the first example of [9] to show
that we are able to reproduce their results. In both cases, we use
the noise load method proposed in [9] to construct the random
input signals that are used to probe the filter’s performance.
Note that this method was originally applied only to direct
form filters, but we have extended it here to work with any
desired structure.

A. Performance vs. Resolution

Let us consider the bireciprocal lattice wave digital filter
shown in Fig. 3, whose network matrix is given by

NLat =



1 2 1
2 7 1
3 4 1
5 4 −1
5 1 1
6 5 −1/3
6 1 −1
7 5 1
7 6 1
8 3 1
8 6 1
9 8 1/2


.

In the sequel, we will investigate the performance of the lattice
implementation of the filter and three alternative implementa-
tions. More precisely, we consider the direct form I (DF1) and
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Fig. 3. Lattice implementation of the third order Butterworth filter analyzed
in Section IV-A.

direct form II (DF2), whose network matrices are

NDF1 =



1 2 1
2 3 1
3 7 1
4 5 1
5 6 1
6 8 1
8 7 b0
8 3 b1
8 2 b2
8 1 b3
8 4 −a3
8 5 −a2
8 6 −a1



NDF2 =



1 2 1
2 3 1
3 5 1
5 4 1
5 3 −a1
5 2 −a2
5 1 −a3
6 5 b0
6 3 b1
6 2 b2
6 1 b3


,

as well as the direct form II transposed (DF2T), whose network
matrix is given by

NDF2T =



1 6 1
2 7 1
3 8 1
5 4 b0
5 1 1
6 4 b1
6 2 1
6 5 −a1
7 4 b2
7 3 1
7 5 −a2
8 4 b3
8 5 −a3
9 5 1



.

The coefficients for the three direct forms are ob-
tained through the following Matlab command: [b,a] =
butter(3,0.5). This results in a1 ≈ 0, a2 = 0.3333,
a3 ≈ 0, b0 = 0.1667, b1 = 0.5000, b2 = 0.5000 and b3 =
0.1667. Regarding the quantization matrix, the same quantizer
type is used for all the inputs, outputs and coefficients: a
signed fixed-point quantizer (mode = ’fixed’), rounding
towards −∞ (roundmode = ’floor’), saturating in over-
flow (overflowmode = ’saturate’), using B bits for
the fractional part and 3 bits for the integer part (i.e., B + 3
bits overall). Figure 4 shows the average level of the noise
power spectral density (PSD) in dB (PmdB in the algorithm
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Fig. 4. Average level of the noise power spectral density (PSD) in dB, as a
function of the number of bits used for the fractional part (B = 8, . . . , 24)
for the four implementations analyzed in Section IV-A.

Fig. 5. Implementation of the second-order system (SOS) filter analyzed in
Section IV-B.

of Table II), as a function of the number of bits used for the
fractional part (B = 8, . . . , 24) for the four implementations
analyzed in this section. The inputs are constructed according
to the noise load method described in [9]. Table II shows
our Matlab implementation of the noise load method for any
structure described using the framework proposed in Section
III. Note that the performance of the lattice implementation is
the best one as expected, whereas all the direct forms provide
very similar results (less than 0.3 dB in difference). Note also
the 6 dB increase in performance with each bit added in all
the implementations.

B. Noise Response

Let us consider the second-order system (SOS) shown in
Figure 5. This filter corresponds to the following network
matrix and quantizer matrix implementation:

NSOS =



1 6 1
2 5 1
4 3 b2
4 1 1
5 3 b0
5 4 −c0
6 2 1
6 3 b1
6 4 −c1
7 4 1


, QSOS =



q11 q12 q13
q21 q22 q23
q31 q32 q33
q41 q42 q43
q51 q52 q53
q61 q62 q63
q71 q72 q73
q81 q82 q83


,
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TABLE II. MATLAB IMPLEMENTATION OF THE EXTENDED NOISE
LOAD METHOD ORIGINALLY DESCRIBED IN [9].

[H,PdB,PmdB] = noiseLoad(N,Q,L)

% H : Frequency response of the filter.
% PdB : Noise PSD in dB for each test.
% PmdB : Average noise PSD in dB.
% N : Network matrix.
% Q : Quantizer matrix.
% L : Number of tests performed.

m = length(find(N(:,1)-N(:,2)<0)); % Number of delays in the network
ci = zeros(1,m);

% Initialization

pk = 1024;
sumH = zeros(1,pk);
sumY2 = sumH;

% Test Loop

for i = 1:L
phi = 2*pi*rand(1,pk/2-1);
phi = [0 phi 0 -phi(pk/2-1:-1:1)];
Vp = exp(j*phi);
vp = real(ifft(Vp));
v = [vp vp];
[y,cf] = filterNq(N,v,ci,Q);
y = y(pk+1:1:2*pk);
Yp = fft(y);
sumH = sumH+Yp./Vp;
sumY2 = sumY2+real(Yp.*conj(Yp));

end

H = sumH/L;
P = ((sumY2/L)-real(H.*conj(H)))/pk;
PdB = 10*log10(P);
PmdB = 10*log10(mean(P));

with b0 = b1 = b2 = 0.18, c0 = 0.5625, c1 = −0.75 and
c2 = 1. Regarding the quantization matrix, and following
[9], floating point arithmetic (mode = ’double’) is used
for all the quantizers except for q22, q42, q52, q72 and q82,
which quantize the values of the outputs of the three adders in
Figure 5 whenever they are used. For these quantizers we use
a signed fixed-point quantizer (mode = ’fixed’), round-
ing towards −∞ (roundmode = ’floor’), saturating in
overflow (overflowmode = ’saturate’), using 15 bits
for the fractional part and 1 bit for the integer part (i.e., 16 bits
overall). Now we apply again the noise load method to estimate
the frequency response of the filter, altogether with its noise
PSD, under the presence of FWL effects [9]. By performing
100 iterations of the method, we obtain the estimates of the
frequency response of the filter, Ĥ(ω), and the noise power
spectral density, N̂(ω), shown in Figure 6. Note that these
results are identical to the ones displayed in Figure 4 of [9],
showing that we are able to obtain the same resolution, but
following a much more reproducible approach.

V. CONCLUSIONS

In this paper, we have introduced a novel compact
framework for the representation of single-input single-output
(SISO) linear digital networks. This framework allows us to
describe precisely the data flow through the network as well
as all the quantizations performed, thus allowing for an easily
reproducible analysis of any of the networks described. As case
studies for the proposed approach, we have analyzed a third
order Butterworth filter with four different implementations,
as well as the noise power spectral density of a second-order
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Fig. 6. Estimated frequency response of the filter, Ĥ(ω), and noise PSD,
N̂(ω), for the example in Section IV-B.

system. Future lines include analyzing more complex systems,
extending the current framework to multiple-input multiple-
output (MIMO) networks, fully exploiting the multiple word
length paradigm that can be naturally integrated within the
current framework, and combining it with the Monte Carlo
analysis introduced in [10] to optimize the number of quanti-
zation bits used for each coefficient and operation.
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