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Abstract—Inference of space-time signals evolving over graphs
emerges naturally in a number of network science related
applications. A frequently encountered challenge pertains to
reconstructing such dynamic processes given their values over a
subset of vertices and time instants. The present paper develops a
graph-aware kernel-based kriged Kalman filtering approach that
leverages the spatio-temporal dynamics to allow for efficient on-
line reconstruction, while also coping with dynamically evolving
network topologies. Laplacian kernels are employed to perform
kriging over the graph when spatial second-order statistics are
unknown, as is often the case. Numerical tests with synthetic and
real data illustrate the superior reconstruction performance of
the proposed approach.

Index Terms—Graph signal reconstruction, time series on
graphs, kriged Kalman filtering, Laplacian kernels.

I. INTRODUCTION

A number of applications involve data that can be efficiently
represented as node attributes over social, economic, sensor,
communication, and biological networks [1]. An inference
problem that often emerges is to predict the attributes of all
nodes in the network given the attributes of a subset of nodes.
Such a task is of paramount importance in applications where
collecting the attributes at all nodes is prohibitive, as is the
case when sampling massive graphs or when the attribute of
interest is of sensitive nature such as the transmission of HIV
in a social network. This problem has been formulated as
extrapolation or reconstruction of a function or signal on a
graph [1], [2]. Extrapolation typically leverages smoothness
of the attributes with respect to the graph, meaning that
connected nodes have similar attribute values. Oftentimes, the
aforementioned networks and attributes evolve over time. The
space-time dynamics of such time-varying graph functions
should be properly modeled to achieve accurate reconstruction
over space and time.

Reconstruction of time-invariant graph functions has at-
tracted great attention in recent years. The community of
signal processing on graphs mainly adopts the so-called ban-
dlimited model, which postulates that the signal of interest lies
in a B-dimensional subspace related to the graph topology [3],
[4], or assumes that the signal can be sparsely represented on
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an over-complete dictionary [5]. On the other hand, the ma-
chine learning community advocates estimators that exploit the
aforementioned notion of smoothness [6], [7]. Interestingly,
most estimators considered by both communities can be seen
as special cases of kernel-based estimators [2].

On the other hand, reconstruction of time-varying graph
functions has been typically tackled by assuming that the
function of interest changes slowly over time. Distributed
reconstruction methods are reported in [8] and [9]. However,
they rely on the bandlimited model, whose effectiveness in
capturing the dynamics of real-world graph functions may
not hold. A kernel-based Kalman filter that captures muliple
forms of spatiotemporal dynamics through space-time kernels
was explored in [10]. But it mainly relies on smoothness
and does not explicitly account for the underlying dynamics.
However, there are cases where the wanted function exhibits
markedly different behaviors over space and time, which
existing approaches cannot account for. To circumvent this
limitation, a kriged graph Kalman filter is introduced in this
paper.

Kriging has been traditionally employed to interpolate sta-
tionary spatial processes that take values over subsets of the
Euclidean space [11, Ch. 3]. Kriging essentially performs
linear minimum mean-square error (LMMSE) estimation. To
accommodate time-evolving fields, [12] introduced the kriged
Kalman filter (KrKF), which affords low-complexity online
spatial prediction. A reduced-dimension version of the KrKF
was introduced in [13] by expanding the spatio-temporal
process as a linear combination of basis functions and applying
the Kalman filter (KF) to the expansion coefficients.

Kriging was extended in [14] to estimate path delays over
IP networks modeled by time-evolving functions defined on
the edges of a graph. Building on [14], [15] exploits temporal
dynamics through the KrKF for estimating network delays.
However, [15] adopts a random walk model on a static
graph and therefore cannot capture general spatial dynamics.
All these KrKF approaches require knowledge of the spatial
statistics, which are furthermore assumed fixed over time.

The main contribution of this paper is to extend the KrKF
for prediction of general spatiotemporal processes that evolve
over dynamic graphs whose topology may change over time.
The resulting estimator is capable of promoting smoothness
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over time through a state-space model, and smoothness over
space through kriging. A generalization of the latter based
on Laplacian kernels is introduced to cope with uncertainty
in the spatial statistics of the process. The computational
complexity of the proposed algorithm is linear in the number
of time samples, rendering it attractive for online and big data
applications.

The rest of the paper is structured as follows. Sec. II
formulates the problem and presents the proposed model.
Sec. III presents the kernel KrKF (KKrKF) for graphs. The
numerical experiments in Sec. IV demonstrate the benefits of
the proposed method. Finally, Sec. V provides some closing
remarks.

Notation: Scalars are denoted by lowercase, column vectors
by bold lowercase, and matrices by bold uppercase letters.
Superscripts > and † respectively denote transpose and
pseudo-inverse; E[x] stands for the expectation of the random
vector x; 1N for the N × 1 all-one vector; δ[·] for the
Kronecker delta; and diag {x} corresponds to a diagonal
matrix with the entries of x on its diagonal. Finally, if A
is a matrix and x a vector, then ||x||2A := x>A−1x and
||x||22 := x>x.

II. MODELING AND PROBLEM FORMULATION

A time-varying graph is a tuple G[t] := (V,A[t]) t =
1, 2, . . ., where V := {v1, . . . , vN} denotes the vertex set
and A[t] the N × N adjacency matrix, whose (n, n′)-th
entry An,n′ [t], is the nonnegative edge weight connection
vertices vn and vn′ at time t. The graphs in this paper are
undirected and have no self-loops, which respectively imply
that A[t] = A>[t] and An,n[t] = 0, ∀t, n. The Laplacian
matrix is defined as L[t] := diag {A[t]1N} − A[t], and
is known to be positive semidefinite [1]. A time-varying
graph function (or signal) is a map f : V × T → R,
where T = {1, 2, . . .} is the set of time indices. Specifically,
fn[t] := f(vn, t) represents an attribute value at node n and
time t, e.g. the closing price of the n-th stock on the t-th day.
Vector f [t] := [f1[t], . . . , fN [t]]> ∈ RN collects the function
values at time t.

At time t, fn[t] is observed at a subset of S[t] nodes S[t] ⊂
V . The observations y[t] ∈ RS[t] can be compactly arranged
as

y[t] = S[t]f [t] + e[t], t = 1, 2, . . . (1)

where S[t] ∈ {0, 1}S[t]×N selects the rows of f [t] with indices
in S[t], and e[t] ∈ RS[t] represents the observation error.
It is assumed that e[t] has zero mean E[e[t]] = 0, and is
uncorrelated over time and space, meaning that E[e[t]e>[τ ]] =
σ2
eIS[t], if t = τ , and 0S[t],S[τ ] otherwise.
Per slot t, f [t] will be modeled as the superposition

f [t] = fχ[t] + fν [t] (2)

where {fν [t]}t are temporally uncorrelated and capture only
spatial dependencies, while {fχ[t]}t are spatio-temporally
colored obeying the state equation

fχ[t] = P [t]fχ[t− 1] + η[t], t = 1, 2, . . . (3)

where P [t] is an N × N transition matrix, and η[t] is
noise with E[η[t]] = 0 and E[η[t]η>[τ ]] = Ση[t]δ[t− τ ].
Moreover, fχ[0] has mean E[fχ[0]] = µχ[0] and covari-
ance matrix E[(fχ[0] − µχ[0])(fχ[0] − µχ[0])>] = Σχ[0],
and it is assumed uncorrelated with η[t] and e[t]; that is
E[η[t]f>χ [0]] = 0N,N , and E[e[t]f>χ [0]] = 0S[t],N ∀t. The
model in (3) is widely used and offers flexibility in tracking
multiple forms of temporal dynamics [16, Ch. 3].

On the other hand, fν [t] is assumed zero mean, since its
mean can otherwise be incorporated into E[fχ[t]], and has
covariance matrix E[fν [t]f>ν [τ ]] = Σν [t]δ[t− τ ]. Finally,
e[t] and η[t] are uncorrelated, meaning that E[e[t]η>[τ ]] =
0S[t],N , and also uncorrelated with fν [t], i.e., E[e[t]f>ν [τ ]] =
0S[t],N , E[η[t]f>ν [τ ]] = 0N,N ∀t, τ .

Given the model described by (1)-(3), the goal of this paper
is to reconstruct f [t] online, given y[τ ], S[t], σ2

e , Ση[τ ], P [τ ]
and A[τ ] for τ = 1, . . . , t.

Remark 1. In the field of geostatistics, fν [t] models the
so-termed small-scale spatial fluctuations, while fχ[t] cor-
responds to the so-called trend. The decomposition (2) is
often dictated by the sampling interval: whereas fχ[t] captures
slow dynamics relative to the sampling interval, fast variations
are modeled with fν [t]. Examples motivating (2) include
network delay prediction [15], where fχ[t] represents the
queuing delay while fν [t] the propagation, transmission, and
processing delays. Likewise, when predicting prices across
different stocks, fχ[t] captures the daily evolution of the stock
market, which is correlated across stocks and time samples,
while fν [t] describes unexpected changes, such as the daily
drop of the stock market due to political statements, which are
considered uncorrelated over time.

Remark 2. The state transition matrix P [t] can be selected
in accordance with the prior information available. Simplic-
ity in estimation motivates the random walk model, where
P [t] = αIN with α > 0. On the other hand, adherence to the
graph, prompts the selection P [t] = αA[t], in which case (3)
amounts to a graph-constrained vector autoregressive model;
see e.g. [17].

III. GRAPH-AWARE KERNEL KRIGED-KF

This section presents our KKrKF approach. After establish-
ing that kernel ridge regression (KRR) in [2], [18] generalizes
clairvoyant kriging in [11], we will introduce our novel
KKrKF that does not require knowledge of Σν [t].

A. Kriged Kalman Filter

The KrKF algorithm was first introduced for prediction
of processes evolving over continuous fields, as typically
occurs in geostatistics [13]. In contrast, this section reviews
the KrKF for processes f [t] that evolve over a graph [15],
where estimation is performed in two steps. In the first step, an
estimate f̂χ[t|t] is obtained from the measurements {y[τ ]}tτ=1

using the traditional Kalman filter (KF) [16, Ch. 3] with the
unknown fν [t] lumped in the observation noise. In the second
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step, fν [t] is estimated through the kriging predictor [11],
which is given by the LMMSE estimator

f̂ν [t|t] =E
{
fν [t]

∣∣fχ[t]= f̂χ[t|t],y[t]}
=Σν [t]S

>[t](S[t]Σν [t]S
>[t] + σ2

eIS[t])
−1ψ[t] (4)

where ψ[t] := y[t] − S[t]f̂χ[t|t]. Finally, combining the
component estimates yields [cf. (2)]

f̂ [t|t] = f̂χ[t|t] + f̂ν [t|t]. (5)

A challenge associated with KrKF is that the kriging pre-
dictor (4) requires knowledge of Σν [t]. The next subsection
reviews graph Laplacian kernels, and proposes a generalization
of the kriging predictor that does not require knowledge of the
underlying spatial statistics.

B. Kernel Kriged Kalman Filter

After recognizing that the kriging predictor is a special case
of the KRR estimator, our KKrKF algorithm is presented.

Kernel ridge regression seeks an estimate of a graph func-
tion fν given the observations ψ = Sfν + e. The argument
[t] is dropped to reflect that a single time instant will be
considered. The KRR estimate of fν is given by [2]

f̂ν = argmin
fν

1

S
||ψ − Sfν ||22 + µf>νK

−1fν

=KS>(SKS> + µSIS)
−1ψ (6)

where µ is a user-selected regularization parameter and
K > 0 is a kernel matrix, whose (n, n′)-th entry encodes
some notion of similarity between vn and vn′ [2], [6], [7],
[18]. Notice that the KRR estimator (6) reduces to the kriging
predictor (4) if µS = σ2

e and Σν = K. As a result, (6)
generalizes (4) in the sense that fν can be deterministic,
so long as it belongs to a reproducing kernel Hilbert space
generated by the prescribed K. Rather than minimizing the
LMMSE criterion, the resulting KRR can account for the
underlying graph through a judicious selection of K.

Laplacian kernels have been widely used [2], [7] to pro-
mote the smoothness embodied in the graph topology. For
a given Laplacian matrix with eigendecomposition L =
U diag{λ}U>, a Laplacian kernel is defined as [7]

K−1 := r(L) := U diag{r(λ)}U> (7)

where r : R → R is a monotonically increasing function.
Table I summarizes common choices of r(·), which can be
selected to promote a certain structure in the so-called graph
Fourier transform of fν [1], [2], [7]. To sum up, one can obtain
f̂ν through (4) after replacing Σν with a Laplacian kernel.

Interestingly, for a class of random fν there exists a
function r(·) such that the LMMSE and KRR estimators yield
the same estimate. These graph signals are deemed to be
graph stationary in [19], [20], and their covariance matrix is
diagonalizable by the eigenvectors of L.

Proposition 1. If fν is a graph stationary signal on G =
(V,A), and the Laplacian L = U diag{λ}U> has distinct

Kernels Function
Diffusion [6] r(λ) = exp{σ2λ/2}

Laplacian regularization [1], [7] r(λ) = 1 + σ2λ

Bandlimited [2] r(λ) =

{
1/β, λ ≤ λmax

β, o.w.

TABLE I: Common transformation functions.

Algorithm 1: Kernel Kriged Kalman filter (KKrKF)

Initialize: f̂χ[0|0] = µχ[0],M [0|0] = Σχ[0]
for t = 1, . . . do

Input: Ση[t] ∈ SN+ , P [t] ∈ RN×N , y[t] ∈ RS[t],
S[t] ∈ {0, 1}S[t]×N , σ2

e , K[t] ∈ SN+ .

Σε[t] := S[t]K[t]S>[t] + σ2
eIS[t]

f̂χ[t|t− 1] = P [t]f̂χ[t− 1|t− 1]
M [t|t− 1] = P [t]M [t− 1|t− 1]P>[t] + Ση[t]
G[t] =M [t|t− 1]S>[t](Σε[t] + S[t]M [t|t− 1]S>[t])−1

f̂χ[t|t] = f̂χ[t|t− 1] +G[t](y[t]− S[t]f̂χ[t|t− 1])
M [t|t] = (IN −G[t]S[t])M [t|t− 1]
f̂ν [t|t] =K[t]S>[t]Σ−1ε [t](y[t]− S[t]f̂χ[t|t])

Output: f̂χ[t|t]; f̂ν [t|t]; M [t|t].
end for

eigenvalues, then the covariance matrix Σν of fν is a Lapla-
cian kernel.

Proof. Since fν is graph stationary, Σν is diagonalizable
by U , meaning that Σν = U diag {σ}U>, where σ :=
[σ1 . . . σN ]> > 0 collects the eigenvalues of Σν . A transfor-
mation r−1(·) can then be selected such that σi = r−1(λi),
as long as {λi}i are distinct.

Therefore, if fν [t] is graph stationary, it follows that

Σν [t] =K[t] = U [t](diag{r(λ[t])})−1U>[t] (8)

for some r(·), and the estimates (4) and (6) coincide.
The proposed KKrKF is summarized as Algorithm 1. This

online estimator with complexity O(N3) per t, tracks the
temporal variations of the signal of interest through (3), and
promotes desired properties such as smoothness over the
graph, by judiciously selecting the Laplacian kernel. Different
from existing approaches, our KKrKF takes into account the
underlying graph structure in estimating fν [t] as well as fχ[t].
Furthermore, by using the Laplacian matrix in (8), it can also
accommodate dynamic graph topologies.

IV. SIMULATIONS

This section describes tests on synthetic and real graph
functions over dynamic graphs which demonstrate the superior
performance of KKrKF over competing alternatives. The
tests compare the following reconstruction algorithms: (i)
The least mean-squares (LMS) algorithm in [9] with step size
µLMS; (ii) the distributed least-squares reconstruction (DLSR)
algorithm [8] with step sizes µDLSR and βDLSR (both LMS
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and DLSR can track slowly time-varying B-bandlimited graph
signals); (iii) The B-bandlimited instantaneous estimator (BL-
IE) which uses the estimator in [3], [4] per slot t; and (iv)
Algorithm 1 with the following configuration: a diffusion
kernel (cf. Table I) with parameter σ; a state noise covariance
Ση[t] = sηΣη with parameter sη > 0 and Ση := NN> a
positive definite matrix with N ∈ RN×N a random matrix
with standardized Gaussian entries; and a transition matrix
P [t] = αA[t] with parameter α.

The performance of the aforementioned approaches is eval-
uated in terms of the normalized mean-square error

NMSE({S[τ ]}tτ=1) :=
E
[∑t

τ=1 ||Sc[τ ](f [τ ]− f̂ [τ |τ ])||22
]

E
[∑t

τ=1 ||Sc[τ ]f [τ ]||22
]

where the expectation is taken over the sample locations, and
realizations of Ση , and Sc[τ ] is an (N −S[τ ])×N matrix
comprising the rows of IN whose indices are not in S[t]. For
all the tests, the sampling set is chosen uniformly at random
without replacement over V and kept constant over time; that
is S[t] = S, ∀t.

The first real dataset contains timestamped messages ex-
changed over an online social network between students at
the University of California, Irvine [21] for a period of 90
days corresponding to 3 months. The sampling interval t is
one day. A network was created where {An,n′ [t]}t=30k

t=30(k−1)+1

counts the number of messages exchanged between student
n and n′ in the k-th month. The resulting topology changes
across months. A subset of N = 310 users for which
A[t] corresponds to a connected graph ∀t was selected. At
each time t, f [t] was generated by adding a temporally
uncorrelated B-bandlimited component with B = 5 and a
spatio-temporally correlated component. Specifically, f [t] =∑5
i=1 γi[t]ui[t] + fχ[t], where fχ[t] follows (3), {γi[t]}5i=1

are standardized Gaussian distributed for all t, and {ui[t]}5i=1

are the eigenvectors associated with the 5 smallest eigenvalues
of the Laplacian matrix at time t. Function fn[t] is therefore
smooth with respect to the graph and can be interpreted e.g.
as the time that the n-th student spends on the specific social
network during the t-th day.

The first experiment justifies the proposed decomposition
by assessing the impact of dropping each term on the right
hand side of (2). Fig. 1 depicts the NMSE over the time index
for KKrKF; the Kalman filter (KF) estimator, which results
from setting f̂ν [t|t] = 0 for all t in the KKrKF and therefore
does not exploit spatial information, as well as kernel Kriging
(KKr), which the KKrKF reduces to if f̂χ[t|t] = 0 for all
t and therefore does not exploit temporal information. As
observed, the novel algorithm, which accounts for both terms,
is capable of efficiently capturing the spatial as well as the
temporal dynamics over time-evolving topologies.

The second dataset is provided by the National Climatic
Data Center [22], and comprises hourly temperature measu-
ments at N = 109 measuring stations across the continental
United States in 2010. A time-invariant graph was constructed
as in [10], based on geographical distances. The value fn[t]
represents the temperature recorded at the n-th station and

Time[day]

0 10 20 30 40 50 60 70 80 90

N
M

S
E

0

0.2

0.4

0.6

0.8

1

KKr

KF

KKrKF

Fig. 1: NMSE of function estimates. (µχ[0] = 0, Σχ[0] = 0,
σ2
e = 10−4, σ = 1.5, α = 0.028, sη = 10−4)
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Fig. 2: True temperature values along with the estimated ones.
(µχ[0] = 0, Σχ[0] = 0, σ = 1.8, B = 5, µDLSR = 1.2,
βDLSR = 0.5, µLMS = 0.6, α = 10−3, sη = 10−5)

t-th sample. The sampling interval is one hour for the first
experiment and one day for the second.

Next, the performance of the different reconstruction algo-
rithms is evaluated in tracking the temperature values. Fig. 2
depicts the true temperature value along with the estimates of
the different algorithms for a station n that is not sampled, i.e.
n /∈ S , with S = 40. Clearly, the novel algorithm accurately
tracks the temperature by exploiting spatial and temporal
information. On the other hand, DLSR and LMS cannot
capture the fast signal variations. Finally, Fig. 3 compares
the NMSE of all considered approaches, and showcases the
superior NMSE performance of Algorithm 1 for S = 40. As
observed, KKrKF captures the spatio-temporal dynamics and
outperforms existing alternatives.

V. CONCLUSIONS

This paper introduced an online estimator to reconstruct
dynamic processes over dynamic graphs. In this context, the
function to be estimated was decomposed in two parts: one
capturing the spatial dynamics while being uncorrelated over
time, and the other modeling jointly spatiotemporal dynamics.
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Fig. 3: NMSE of temperature estimates. (µχ[0] = 0, Σχ[0] =
0, σ = 1.8, µDLSR = 1.6, βDLSR = 0.5, µLMS = 0.6, α =
10−3, sη = 10−5)

A novel kernel kriged Kalman filtering approach was devel-
oped that leverages Laplacian kernels for reconstructing the
spatial component. The algorithm was evaluated on synthetic
as well as real-data scenarios, and performed markedly better
than existing alternatives. Future work includes distributed im-
plementations, multi-kernel approaches for optimal selection
of r(·), and data-driven learning of P [t].
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