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Abstract—In this paper, we address the blind source separation
(BSS) problem and analyze the optimal window length in the
short-time Fourier transform (STFT) for independent low-rank
matrix analysis (ILRMA). ILRMA is a state-of-the-art BSS tech-
nique that utilizes the statistical independence between low-rank
matrix spectrogram models, which are estimated by nonnegative
matrix factorization. In conventional frequency-domain BSS, the
modeling error of a mixing system increases when the window
length is too short, and the accuracy of statistical estimation
decreases when the window length is too long. Therefore, the
optimal window length is determined by both the reverberation
time and the number of time frames. However, unlike classical
BSS methods such as ICA and IVA, ILRMA enables the full
modeling of spectrograms, which may improve the robustness to
a decrease in the number of frames in a longer-window case. To
confirm this hypothesis, the optimal window length for ILRMA
is experimentally investigated, and the difference between the
performances of ILRMA and conventional BSS is discussed.

I. Introduction

Source separation is a technique for estimating specific
source signals from observed mixture signals. Many ap-
proaches have been developed for single-channel and multi-
channel observations. Blind source separation (BSS) in de-
termined and overdetermined cases (number of channels ≥
number of sources) has been well studied so far [1]–[10]. BSS
does not require any prior information about the recording en-
vironment or the locations of sources or sensors. In particular,
independent component analysis (ICA) [1] and its extensions,
frequency-domain ICA (FDICA) [2]–[7] and independent vec-
tor analysis (IVA) [8]–[10], are the most popular methods for
solving the BSS problem of audio signals. These methods
exploit the statistical independence between specific sources
and estimate a demixing matrix for the separation. For both
ICA and IVA, fast and stable update rules, which are derived
by an auxiliary function technique, have been proposed [11],
[12].

As another means of solving audio source separation, non-
negative matrix factorization (NMF) [13], [14] is widely used
for both blind and informed source separation [15]–[20]. NMF
is a parts-based low-rank decomposition and can extract some
meaningful spectral patterns (bases) with their time-varying
gains (activations) from an observed spectrogram. In [21]
and [22], a multichannel extension of NMF (multichannel
NMF: MNMF) was proposed, which clusters the decomposed
bases and activations into each source using estimated spatial
parameters.

Recently, a new BSS method that unifies IVA and NMF was
proposed by the authors [23]–[25], which is called independent
low-rank matrix analysis (ILRMA) in this paper1. Similarly
to MNMF, ILRMA exploits the NMF decomposition of the
estimated source spectrograms as a low-rank spectral model
and optimizes the frequency-wise demixing matrix based on
the independence between the spectral models. This NMF-
based spectral model in ILRMA (low-rank matrix) can be
interpreted as a natural extension of those in FDICA (scalar)
and IVA (vector).

The separation result of all ICA-based frequency-domain
BSS methods strongly depends on the length of the analysis
window in the short-time Fourier transform (STFT). This is
because the modeling error of a mixing system increases
when the window length is too short, and the accuracy of
statistical estimation decreases when the window length is too
long (fewer time frames) [4], [26]. However, unlike classical
BSS methods such as ICA and IVA, ILRMA enables the full
modeling of spectrograms, which may improve the robustness
to a decrease in the number of frames in a longer-window case.
In this paper, to confirm this hypothesis, we experimentally
compare the optimal window lengths for FDICA, IVA, and
ILRMA, and discuss the difference in their performances.

II. Related Frequency-Domain BSS Algorithms

A. Formulation

Let N and M be the numbers of sources and channels,
respectively. The complex-valued source, observed, and es-
timated signals are defined as si j = (si j,1, · · · , si j,N)T, xi j =

(xi j,1, · · · , xi j,M)T, and yi j= (yi j,1, · · · , yi j,N)T, where i=1, · · · , I;
j = 1, · · · , J; n = 1, · · · ,N; and m = 1, · · · ,M are the integral
indexes of the frequency bins, time frames, sources, and
channels, respectively, and T denotes a transpose. We also
describe the spectrograms of the source, observed, and esti-
mated signals as Sn ∈ CI×J , Xm ∈ CI×J , and Yn ∈ CI×J , whose
elements are si j,n, xi j,m, and yi j,n, respectively. In FDICA, IVA,
and ILRMA, the following mixing system is assumed:

xi j = Aisi j, (1)

where Ai= (ai,1 · · · ai,N) ∈ CM×N is a frequency-wise mixing
matrix and ai,n is the steering vector for the nth source. This

1Note that ILRMA was called rank-1 MNMF in [23]–[25]. We have
renamed the method to clarify that ILRMA is a natural extension of IVA.
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mixing system is called a linear time-invariant mixture or the
rank-1 spatial model [27]. Thus, the estimated signal yi j can
be obtained by assuming M=N and estimating the frequency-
wise demixing matrix Wi= (wi,1 · · · wi,N)H=A−1

i as

yi j =Wixi j, (2)

where wi,n is the demixing filter for the nth source and H

denotes a Hermitian transpose. The objective in FDICA, IVA,
or ILRMA is to estimate both Wi and yi j from only the
observation xi j assuming the statistical independence between
si j,n and si j,n′ , where n′,n.

B. FDICA and IVA
In FDICA [2]–[7], a robust BSS method for reverberant

observations, ICA is applied to the frequency-wise signal
(xi1,m, · · · , xiJ,m) while assuming a non-Gaussian source dis-
tribution p(s) ≈ p(y). Since the permutation of the estimated
signals at each frequency must be aligned, various permu-
tation solvers have been proposed. IVA [8]–[10] is one of
the most elegant solutions of the permutation problem. IVA
formulates the frequency components as a vector x̄ j,m =

(x1 j,m, · · · , xI j,m)T and applies multivariate ICA to the vector
signal (x̄1,m, · · · , x̄J,m) to estimate the frequency-wise demix-
ing matrix Wi, where the source vector s̄ j,n= (s1 j,n, · · · , sI j,n)T

is assumed to have a spherical I-dimensional non-Gaussian
source distribution p(s̄) [10]. This spherical property ensures
higher-order dependences among the frequency components in
s̄ j,n, thus avoiding the permutation problem.

C. ILRMA
ILRMA extends the source model p(s̄) in IVA to the

following time-varying distribution:∏
i, j

p(yi j,n) =
∏
i, j

1
πri j,n

exp
(
−
|yi j,n|2
ri j,n

)
, (3)

where the local distribution p(yi j,n) is defined as a circularly
symmetric (isotropic) complex Gaussian distribution, namely,
the probability of p(yi j,n) only depends on the power of the
complex value yi j,n. Also, ri j,n is a time-frequency-varying
nonnegative variance and corresponds to the expectation of
the power of yi j,n, namely, E[|yi j,n|2]. This is because p(yi j,n)
is isotropic in the complex plane. Since the variance ri j,n can
fluctuate depending on the time frames, (3) becomes a non-
Gaussian distribution. The negative log-likelihood function L
based on (3) can be obtained as follows by assuming the
independence between each source and each time frame:

L = const. − 2J
∑

i

log | detWi| +
∑
i, j,n

(
log ri j,n +

|yi j,n|2
ri j,n

)
. (4)

ILRMA applies Itakura–Saito-divergence-based NMF (IS-
NMF) to Yn. In ISNMF [28], the decomposition yi j,n=

∑
l ci j,nl

is assumed, where l = 1, · · · , L is the integral index and L is
set to a much smaller value than min(I, J). The components
ci j,nl are assumed to be mutually independent and obey

p(ci j,nl) =
1

πtil,nvl j,n
exp

(
−
|ci j,nl|2
til,nvl j,n

)
, (5)
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Fig. 1. Conceptual model of ILRMA, where x̃m and ỹn are time-domain
signals of Xm and Yn, respectively.

where til,n and vl j,n are the basis and activation, respectively,
and til,nvl j,n =E[|ci j,nl|2]. Because of the reproductive property
of (5), yi j,n(=

∑
l ci j,nl) obeys (3) with the variance ri j,n =∑

l til,nvl j,n. This fact means that the additivity of the power
spectrogram holds in an expectation sense [28], which pro-
vides a justification for decomposing the power spectrogram.
Therefore, the power spectrogram of the estimated source is
approximately decomposed with a fixed number of bases and
activations as |Yn|.2 ≈TnVn, where the absolute value and the
dotted exponent for a matrix denote an element-wise absolute
and exponent, respectively, and Tn ∈ RI×L

≥ 0 and Vn ∈ RL×J
≥ 0 are the

basis and activation matrices for the nth source, respectively.
The estimation of Wi, Tn, and Vn can consistently be carried
out by minimizing (4) in a fully blind manner. Note that
ILRMA is theoretically equivalent to conventional MNMF
only when the rank-1 spatial model is assumed, which yields
a stable and computationally efficient algorithm for ILRMA.
This issue and the convergence-guaranteed fast update rules
for Wi, Tn, and Vn can be found in [25].

Fig. 1 shows the conceptual model of ILRMA. When
original sources have a low-rank spectrogram |Sn|.2, the spec-
trogram of their mixture |Xm|.2 should be more complicated,
namely, the rank of |Xm|.2 will be greater than that of |Sn|.2.
On the basis of this assumption, in ILRMA, the low-rank
constraint for each estimated spectrogram |Yn|.2 is introduced
by employing NMF. The demixing matrix Wi is estimated
so that the spectrogram of estimated signal |Yn|.2 becomes a
low-rank matrix modeled by TnVn, whose rank is at most L.

III. Experimental Analysis of OptimalWindow Length

A. Motivation

In the practical use of frequency-domain BSS, the length of
the analysis window in STFT directly affects the separation
performance. For instance, a decrease in performance for
shorter- or longer-window cases in FDICA was reported in [4].
When the window length is too short, the separation fails
because the mixing assumption (1) does not hold owing to
the reverberation. In contrast, when the window length is too
long, the statistical estimation in ICA fails because the number
of time frames J decreases. IVA and ILRMA also suffers
from this problem because they obviously cannot estimate the
demixing matrix Wi when J=1. However, the full modeling of
the I×J spectrogram in ILRMA may improve the robustness
to a decrease in the number of frames in a longer-window
case (fewer time frames). In this section, we experimentally
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TABLE I
Music and speech sources obtained from SiSEC2011

Signal Data name Source (1/2) Length [s]
Music bearlin-roads acoustic guit main/vocals 14.6
Music another dreamer-the ones we love guitar/vocals 25.6
Music fort minor-remember the name violins synth/vocals 24.6
Music ultimate nz tour guitar/synth 18.6
Speech dev1 female4 src 1/src 2 10.0
Speech dev1 female4 src 3/src 4 10.0
Speech dev1 male4 src 1/src 2 10.0
Speech dev1 male4 src 3/src 4 10.0

compare the optimal window lengths for FDICA, IVA, and
ILRMA and discuss the difference in their performances.

B. Dataset and Experimental Conditions

In this experiment, we used four music and four speech
observations, as shown in Table I, where each observation
includes two sources. These dry sources were obtained from
professionally produced music and underdetermined separa-
tion tasks in SiSEC2011 [29]. To simulate the reverberant
mixture, the observed signals were produced by convoluting
the impulse response E2A (T60 = 300 ms) or JR2 (T60 =

470 ms), which was obtained from the RWCP [30], with each
source. Fig. 2 shows the recording conditions of the impulse
responses. Note that all the separation tasks are determined,
namely, N=M=2.

We compared three BSS methods, namely, FDICA, IVA,
and ILRMA. For FDICA, two blind and ideal permutation
solvers were employed and compared: FDICA+DOA and
FDICA+IPS. FDICA+DOA solves the permutation problem
by clustering the components using the relative locations of
microphones and the estimated direction of arrival (DOA) [3],
and FDICA+IPS utilizes the reference (oracle) source spectro-
grams Sn to align the permutations, which is an ideal permu-
tation solver (IPS). All the optimizations in FDICA, IVA, and
ILRMA were based on an auxiliary function technique [11],
[12], [25]. The other experimental conditions are described in
Table II. As an evaluation score of the separation performance,
we used the improvement of the signal-to-distortion ratio
(SDR) [31].

C. Comparison Using Ideal Initialization

To compare the net separation ability for each setting of
the window length, in this subsection, the initial values of
the spatial and spectral parameters in each BSS method are
set to their ideal values. For the spatial parameter, the initial
demixing matrix W (initial)

i is set to its optimal value

W (initial)
i =

(∑
jsi js

H
i j

) (∑
jxi js

H
i j

)−1
, (6)

which gives the best separation performance under the linear
mixing assumption (1). In addition, only for ILRMA, source-
wise initial basis and activation matrices, T (initial)

n and V (initial)
n ,

are pretrained by ISNMF using the oracle power spectrogram
given by(

T (initial)
n ,V (initial)

n

)
= arg min

Tn,Vn

DIS

(
|Sn|.2∥TnVn

)
, (7)

2 m

Source 1

5.66 cm

50 50

2 m

5.66 cm

60 60

Impulse response E2A
(reverberation time: T60 = 300 ms)

Impulse response JR2
(reverberation time: T60 = 470 ms)

(a) (b)

Source 2 Source 1 Source 2

Fig. 2. Impulse responses obtained from RWCP: (a) E2A and (b) JR2.

TABLE II
Experimental conditions

Window function Hamming window

Window length 32/64/128/256/512/768/1024/
1280/1536/1792/2048 ms

Window shift length Quarter of window length
Number of bases for 5/10/30/50 for music signals

each source in ILRMA and 2/3/4/10 for speech signals
Number of iterations 100

where DIS(·∥·) is the element-wise Itakura–Saito divergence.
Therefore, in this experiment, FDICA+DOA and IVA are
based on the spatial oracle initialization, and FDICA+IPS
and ILRMA are based on the spatial and spectral oracle
initialization. Since the separation performance is obviously
maximized for the initial parameter given by (6), this ex-
periment illustrates how the performance decreases at the
converged solution for the model used in each method.

The results are shown in Figs. 3 and 4, where the scores
are averaged over the observed signals with the same impulse
response. As already mentioned in Sect. III-A, the separation
with a shorter window is highly limited in all the methods
because the assumption of a linear mixture model (1) collapses
(the reverberation time exceeds the window length). For the
longer-window case, the performance of FDICA and IVA dete-
riorates when the length exceeds 2T60 even if the oracle source
spectrogram is employed in FDICA+IPS. This instability in
the statistical estimation is caused by the insufficient number
of time frames J [4]. On the other hand, for the music signals
(Fig. 3), ILRMA maintains its separation accuracy even for
windows longer than 1 s. This is a benefit of employing the full
modeling of time-frequency dependences, and the robustness
to fewer time frames is improved by the low-rank spectrogram
modeling. From this result, we can confirm that a longer
window length exceeding 2T60 is preferable for music source
separation using ILRMA, whereas FDICA achieves the highest
performance when the length is set to less than 2T60. However,
this behavior does not appear in the results for speech signals
(Fig. 4). This is because the low-rank assumption in ILRMA
does not apply to the speech signals, and the spectral model
cannot capture the precise source spectrogram during the
optimization.

Since the NMF parameters are pretrained using (7), an
increase in the number of bases directly improves the accuracy
of the spectral model TnVn and the separation performance
of ILRMA. This means that improving the precision of the
spectral model will provide a better estimation of Wi, as
predicted in [10].
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Fig. 3. Average results for music signals using ideal initialization: (a) E2A
(T60=300 ms) and (b) JR2 (T60=470 ms).

D. Comparison Using Random Initialization

In this subsection, the separation performance in a practical
situation is compared for various window lengths. The initial
demixing matrix W (initial)

i was set to the identity matrix in all
the methods, and the initial NMF matrices T (initial)

n and V (initial)
n

were set to nonnegative uniform random values. Therefore,
FDICA+DOA only utilizes the knowledge of the microphone
spacing, FDICA+IPS still exploits |Sn|.2 for IPS, and the other
methods are fully blind.

The results are shown in Figs. 5 and 6. In this experiment,
ILRMA cannot maintain its accuracy for longer windows, and
the optimal length in ILRMA is almost the same as those
in FDICA and IVA. This means that the blind estimation of a
precise spectral model is a difficult problem, and the robustness
of ILRMA against fewer time frames is deteriorated.

The number of bases L does not strongly affect the perfor-
mance in the music separation task (Fig. 5). For the speech
signals (Fig. 6), as reported in [25], a small number of bases
is preferable, whereas spectrograms of speech signals do not
have the low-rank property. For speech signals, the estimation
of TnVn using a large number of bases always fails to capture
the precise source spectrograms |Sn|.2 because of the difficulty
in optimization, and a rough and broad spectral model with a
small number of bases can stably separate the speech sources.

Since FDICA+IPS achieves high separation accuracy even
for speech signals, we have significant scope to improve
speech BSS using the linear mixing model (1), which yields
a computationally efficient solution. The blind capture of
complicated (not low-rank) spectrograms requires another cri-
terion, such as sparseness or time-varying speech structures,
which can be considered as a further study.
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Fig. 4. Average results for speech signals using ideal initialization: (a) E2A
(T60=300 ms) and (b) JR2 (T60=470 ms).

IV. Conclusion

We presented an experimental analysis of optimal window
lengths for FDICA, IVA, and ILRMA. Since ILRMA employs
not only the independence between sources but also a time-
frequency structure for the estimation of a demixing matrix,
the robustness to long windows (fewer time frames) can
be improved. However, in a practical situation, the optimal
window length of ILRMA was similar to that in IVA or
FDICA, which shows the difficulty of the blind estimation
of a precise spectral model in ILRMA.
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