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Abstract—Simultaneous recording of electroencephalographic
(EEG) signals and functional magnetic resonance images (fMRI)
has gained wide interest in brain research, thanks to the highly
complementary spatiotemporal nature of both modalities. We
propose a novel technique to extract sources of neural activity
from the multimodal measurements, which relies on a structured
form of coupled matrix-tensor factorization (CMTF). In a data-
symmetric fashion, we characterize these underlying sources
in the spatial, temporal and spectral domain, and estimate
how the observations in EEG and fMRI are related through
neurovascular coupling. That is, we explicitly account for the
intrinsically variable nature of this coupling, allowing more
accurate localization of the neural activity in time and space.
We illustrate the effectiveness of this approach, which is shown
to be robust to noise, by means of a simulation study. Hence,
this provides a conceptually simple, yet effective alternative to
other data-driven analysis methods in event-related or resting-
state EEG-fMRI studies.

I. INTRODUCTION

In the field of neuroimaging and brain mapping, the com-

bined use of EEG and fMRI has been widely recognized as a

promising approach, since it exploits both the high temporal

resolution from EEG and the excellent spatial resolution from

fMRI. These two key factors enable researchers and clinicians

to address a multitude of questions on cognitive or pathological

neural activity, which underlies the data from both modalities

[1].

The complementarity of the two modalities is at the same

time its own pitfall: it is not straightforward to combine two

such heterogeneous data streams - the fast electrical recording

in EEG which is sparsely sampled over the scalp, and the

sluggishly varying Blood Oxygen Level Dependent (BOLD)

signal in fMRI which, however, can be localized accurately.

Despite the mismatch in spatiotemporal resolution, we can

assume that the two involved modalities measure the same
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neural processes in the brain, although in an indirect way and

to a different extent. Thus, it is unknown to which degree

the spatial and temporal observations in EEG and fMRI are

related. This has led to the development of a wide variety of

analysis tools, all approaching this data fusion problem from

different angles.

One way to characterize these tools is by the way they try

to fit a model to the data and pose restrictions to it. On the

one hand, model-driven techniques exist, ranging from very

complex [2] to simpler models such as the widely applied

General Linear Model (GLM), which has been a standard

workhorse to analyze fMRI datasets [3]. In the common

way of applying the GLM, a single ‘canonical’ hemodynamic

response function (HRF) is used, which describes the expected

BOLD signal resulting from an impulse event in a reference

stimulus time series. Hence, the HRF waveform is considered

invariant over the different brain areas, over neural ‘events’,

and even over different subjects in a group study. Although

the GLM has its merit as a simple and attractive framework

to make sense of (multimodal) brain data, this limitation

obfuscates the interpretations that can be drawn through its

use. Namely, it is well known that the hemodynamic response

displays a significant variability over people, brain areas and

over time [4]–[6], which might even be more severe for

the diseased brain [7]. Hence, misspecification of the HRF

leads to biased estimates of activity and loss in statistical

power [5], [6]. To cope with this variability, several methods

have been proposed, such as adding the derivatives of the

canonical HRF during GLM regression, or non-linear fitting

methods [3], [8]. However, most of these methods still make

an unfavorable trade-off between complexity versus flexibility:

either they deal with only small variations, or they require the

estimation of HRF parameters on a voxel-wise basis. On the

other end of the spectrum, data-driven blind source separation

(BSS) techniques such as independent component analysis

can be used to decompose both EEG and fMRI data into

a set of constituting sources, in which case neural sources

are found by imposing sometimes arbitrary restrictions [9],

[10]. Traditional BSS methods such as independent component

analysis [9] or canonical correlation analysis [11] rely mostly
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on matrix factorization techniques, which operate on data in

a two-way format. Over the past years however, tensor-based

techniques which factorize third or higher order arrays have

been increasingly used [12], [13], also in EEG-fMRI data

analysis [14]–[16]. They offer the advantage that the inherent

multidimensional nature of datasets (such as those in brain

analytics) is respected, and most importantly, that the factor-

izations of tensors can be unique under mild conditions, as

opposed to matrix factorization [12]. However, when applied

to recordings of brain activity, these data-driven techniques

exploit (by definition) no model of the neurovascular coupling,

and might thus neglect prior (approximate) knowledge on the

joint ‘behavior’ of the datasets.

We aim to tackle this issue by taking a hybrid, semi-

informed estimation approach, borrowing ideas from the GLM

as well as from BSS methods. That is, we try to find sources

of neural activity by fusing EEG and fMRI recordings in a

data-driven fashion, while still accounting for a characteristic

temporal relationship between the electrophysiological activity

(as measured with EEG) and the BOLD signal (measured

with fMRI), in the form of an a priori unknown HRF.

Hence, we insert a prior on the neural-hemodynamic coupling

into the problem formulation, which admits to co-estimate

the true underlying HRF from the data itself. We achieve

this combined goal of extracting neural-hemodynamic sources

and their temporal coupling by expressing the problem as a

coupled matrix-tensor factorization (CMTF) [16], [17], where

the fMRI data is a matrix of time samples × voxels and

the EEG spectrogram is represented as a 3rd order tensor

of time samples × electrodes × frequencies as in [15]. The

factorizations of both datasets are then constrained by a shared

factor matrix in the temporal mode, which is transformed by a

convolution with an unknown HRF in the fMRI factorization.

This is a generic framework, in which different kinds of prior

knowledge about the HRF can be inserted to reduce the search

space when solving the problem.

In the following sections, we first explain the tensor-based

framework that we use to tackle the problem. Then, we

analyze the feasibility of the proposed approach by means

of a simulation study. Finally, we present extensions to our

approach that allow to cope with additional variability in the

data.

II. METHODS

A. Generative model

We assume that the recorded EEG and fMRI result from

the superposition of several underlying neural sources, each

with a distinct spatial origin in the brain, accompanied by

a time course of their activity. The EEG recording X over

channels (electrodes) and time is assumed to be transformed to

a spectrogram representation, by means of e.g. the short-time

Fourier transform, followed by squaring the absolute values

of the complex coefficients. The resulting 3rd order tensor X

describes the variation over the spatial, temporal, and spectral

mode. The fMRI data is a matrix Y, describing the variation

over the temporal and spatial mode.

X ≈

c1

a1

b1

+ · · · +

cR

aR

bR

(a)

Y ≈ H

a1

v1

+ · · · +

H

aR

vR

(b)

Fig. 1. Structured coupled matrix-tensor factorization of (a) EEG data and (b)
fMRI data. The signatures ar along the temporal mode are shared between
the EEG factorization and the fMRI factorization, providing the coupling
constraint.

Loosely following the notation in [15], the EEG and fMRI

data can be written as the sum of R sources, which are

reflected in both datasets as follows:

X =
R∑

r=1

ar⊗br⊗cr + Ex

Y =
R∑

r=1

ur⊗vr +Ey =
R∑

r=1

urv
T
r +Ey ,

(1)

where ⊗ indicates the outer product. The column vectors ar,

br, and cr describe the activity of source r over time, and its

distribution over EEG channels and frequencies, respectively.

Analogously, the vectors ur and vr describe the time course

of source r and its distribution over voxels, respectively. The

residuals are contained in Ex and Ey .

B. Structured matrix-tensor factorization

The electrophysiological time course ar(t) of the source in

the EEG is assumed to predict the hemodynamic time course

ur(t) in fMRI by means of a convolution with an unknown

HRF h(t), which can be rewritten as the matrix product of the

temporal signature ar with a Toeplitz matrix H, holding the

samples of h(t) on its diagonals:

ur = Har = Toeplitz(h)ar . (2)

To incorporate prior physiological knowledge, we constrain

the HRF to a ‘plausible’ waveform. For this, we use a family

of parametrized basis functions, i.e., we can model the HRF

as the difference of two gamma functions (like is done for

the often-used canonical HRF in the GLM). The HRF thus

depends on a small number of unknown parameters as h(t) =
f(t, θ) = Γ(θ1)

−1 ·θθ12 tθ1−1e−θ2t−θ3Γ(θ4)
−1 ·θθ45 tθ4−1e−θ5t.

Furthermore, note that the EEG tensor is non-negative,

because it describes the spectral power on the different chan-

nels on different time instants. To obtain an interpretable

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 27



result, we impose that the signatures ar and cr are also

non-negative, since they describe the time-varying power and

spectra of the sources, respectively. Hence, we reformulate

the data fusion problem as a structured matrix-tensor factor-

ization [18], in which the factor matrix A = [a1 a2 . . . aR ]
is shared between the two datasets, while the factor matrices

B = [b1 b2 . . .bR ], C = [ c1 c2 . . . cR ], V = [v1 v2 . . .vR ]
are modality-specific and the parameter set θ describes the

HRF factor matrix H. The coupled factorization can then be

solved by minimizing the following cost function:

J(A,B,C,V, θ) =‖X −
R∑

r=1

ar⊗br⊗cr‖
2 + (3)

‖Y −
R∑

r=1

(H(θ)ar)⊗vr‖
2 , s.t. A,C ≥ 0

in which ‖·‖ indicates the Frobenius norm. Fig.1 shows the

data model, including the dependencies (i.e. coupling) between

EEG and fMRI, which is used to find a structured coupled

matrix-tensor factorization. Under this model, the fMRI data

can be written as Y = HAV
T . Contrary to other (standalone)

matrix factorizations, rotational ambiguity is ruled out between

any pair of the matrices H, A and V
T , since the middle factor

A is constrained by the EEG factorization.

C. Simulation study

We conducted simulations in which the data was generated

according to the model in (1) and (2). That is, we placed

R = 3 neural sources at distinct positions in a template

brain of 91 × 109 × 91 voxels of 2 × 2 × 2mm3, and

picked a HRF which differed from the canonical HRF, as

shown in Fig.2a, 2b, 2c and Fig.4 respectively. We assigned

(overlapping) temporal and spectral signatures to the sources

(see Fig.3), and calculated the spatial distributions over 19

electrodes by means of a forward volume conduction model.

The resulting signatures of the generated sources are depicted

in Fig.2d, 2e, 2f. The temporal signatures span 60 seconds and

are sampled at 4 Hz. After convolution with the chosen HRF,

the obtained fMRI time courses are downsampled to 1 Hz,

mimicking the discrepancy in temporal resolution between the

two modalities. To deal with this mismatch, the downsampling

operation is implicitly assumed in (3) and taken into account

during optimization. The spectral signatures consist of 20

frequency bins.

We added white Gaussian noise of varying signal-to-noise

ratio (SNR) to both EEG and fMRI data. In the remainder

of the text, SNR is measured as the ratio of the variance of

the noise-free time course, either in a voxel or in a electrode-

frequency pair with the highest variance, and the variance

of the noise. Before factorizing, we applied dimensionality

reduction on the fMRI data, by computing the variance in

every voxel, computing z-scores of all variances and rejecting

voxels with a z-score below 1. To summarize, we jointly

factorize a noisy EEG dataset X of dimensions 240×19×20
and a noisy fMRI dataset Y of dimensions 60×N , where N

indicates the remaining number of voxels (typically ∼ 105).

(a) (b) (c)

C3 C4Cz
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Fp1 Fp2

Fz

O1 O2

P3 P4Pz
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T5 T6

(d)
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(f)

Fig. 2. Location and extent of the three neural sources in the fMRI
domain (a, b, c) and topographic plots of the corresponding EEG spatial
signatures, obtained through a forward volume conduction model, based on
the anatomical MRI image and the sources’ positions (d, e, f).
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Fig. 3. Temporal (left column) and spectral (right column) EEG signatures,
which belong to the neural sources in Fig.2 (a.u. = arbitrary units).

Optimization of the cost function in (3) is done through the

Structured Data Fusion framework in Tensorlab [18], [19].

In a realistic setting, the true number sources is unknown a

priori. We therefore computed the factorization for R varying

from 1 to 4, and picked the most likely number of sources

according to the core consistency diagnostic [12], [16]. In all

but a few cases, this heuristic correctly estimated the number

of sources, which is why we only report results for the case

where the number of extracted sources equals R. We aimed

to address several subquestions, further described below.

How reliably can the true signatures be extracted?

Under SNR levels ranging from -8 dB to 12 dB, in steps

of 4 dB, we performed the coupled EEG-fMRI factorization

and checked the relative estimation errors. We exhaustively

repeated this for data which was simulated using every possi-

ble combination of 2 sources, or using all 3 sources. For all

sources, we computed relative estimation errors in the EEG

temporal mode as δa = 1

R

∑R

r=1

‖âr−ar‖
‖ar‖

after an optimal

permutation and scaling of the estimated signatures âr (and

analogously for the spectral and spatial modes). In the fMRI

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 28



domain, we quantified the spatial overlap of true and estimated

sources. For a true underlying source s which is active in a set

P consisting of Ns voxels, we took the set Q of Ns voxels

with the highest value from the estimated signature v̂r (after

applying the same permutation as for the EEG sources) and

computed the Dice coefficient d = 2|P∩Q|
|P |+|Q| = |P∩Q|

Ns

. The

EEG signatures were initialized by performing a factorization

on the EEG dataset separately using parallel factor analysis

(PARAFAC) [12], [16]. The HRF was initialized as the canon-

ical HRF, and the initial voxel signatures were obtained from

Y using the pseudo-inverse of the initialized factors H(θ)
and A. We compared against reference results, which were

obtained by fixing the parameter set θ in (3) to the parameters

of the canonical HRF, similarly to the method in [15].

To which extent can the model cope with HRF variability?

We created different HRFs by varying the timing, width and

relative amplitudes of the positive and negative lobes. The

time of the positive peak varied from 2 s to 10 s, in steps of

2 s, and the negative peak came 5 s, 10 s, or 15 s later. The

width (measured as the difference in time between the 2 points

where the 2nd derivative is zero) of the first lobe was either

2, 5, or 8 s, and the width of the negative lobe was always

1.5 times larger. The 2nd peak had a relative amplitude of 0%

(no peak), 20% or 60% w.r.t. the positive peak. We aimed

to extract the signatures from the datasets generated with 3

sources and these different parameters, for SNR = 4 dB. We

used the Pearson correlation coefficient to assess the similarity

between the waveforms of the estimated and the true HRF.

What is the robustness versus non-white noise?

In the previous experiments, we used additive white Gaussian

noise (WGN). To investigate the effect of noise which is

colored (i.e. non-white) in the spatial or temporal domain,

we conducted two additional tests. In the first test, referred

to as ‘SpCorr’, we introduced spatial correlation in the fMRI

noise by filtering it with a 3D Gaussian smoothing kernel

with a standard deviation of 2 voxels, before adding it to the

generated data. In the second test, referred to as ‘TempCorr’,

we created the fMRI noise by means of an autoregressive

model of order 1 (AR(1)), as et = 0.7et−1 + ξt, where

ξt is drawn from a white Gaussian noise distribution. The

SpCorr experiment takes into account that (background) neural

processes exhibit spatial covariance over neighbouring vox-

els, while the TempCorr experiment mimics AR(1)-structured

residuals, which is an often-used noise model in fMRI [3].

We still added WGN to the EEG dataset in both cases. We

evaluated this scenario for the combination with 2 active

sources. Since only the noise for the fMRI data set was altered,

we track performance in terms of the Dice coefficient.

III. RESULTS

Reliability of extracted signatures

Fig.5a and Fig.5b show the mean relative errors δ for the

EEG factorization in the case of 2 and 3 sources, respectively.

It is clear that, on average, the signatures in the temporal,

time [s]

0 5 10 15 20 25 30
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25 true HRF

canonical HRF

Fig. 4. True underlying hemodynamic response function (full blue line) in
this study, and the canonical hemodynamic response function (dotted red line)
as used in the SPM toolbox. The positive (resp. negative) peaks of both HRFs
are 3 seconds (resp. 4 seconds) apart.
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Fig. 5. Mean relative errors δa, δb, and δc between true and estimated sources
in the EEG’s temporal, spatial, and spectral mode, respectively, in the presence
of 2 sources (a) or 3 sources (b). Results are shown for the case where we
find the HRF in the optimization procedure (‘OPT’) and for the case where
we fix the HRF to the canonical HRF (‘CAN’).

spatial and spectral mode are more accurately estimated

when we account for HRF variability (‘OPT’ condition).

This is expected, since the EEG factorization is influenced

by the fMRI factorization through coupling of the temporal

signatures. A similar effect is observed when looking at the

Dice coefficients: from Fig.6a we conclude that modeling

HRF variability has a beneficial effect on the localization of

neural sources in the brain, i.e. a higher overlap with the true

sources is achieved.

Robustness versus HRF variability

In table I we show the correlation between estimated and true

underlying HRF, for HRFs that vary according to 4 parameters:

time to positive peak, separation between positive and negative

peak, dispersion (i.e. the width of the positive lobe) and

the relative amplitude of the negative peak compared to the

positive peak. As a reference: the parameters of the canonical

HRF are 5 s, 10.7 s, 4.5 s and 0.09, respectively. Values are

SNR [dB]

-8 -4 0 4 8 12

d

0

0.2

0.4

0.6

0.8

1
2 vs. 3 active sources

d, OPT, 3 sources
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(a)
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d, CAN, TempCorr

d, OPT, WGN

d, CAN, WGN

(b)

Fig. 6. Mean dice coefficients d between true and estimated fMRI spatial
signatures, in the presence of 2 or 3 active sources and WGN (a) or 2 active
sources and spatially (‘SpCorr’) or temporally (‘TempCorr’) correlated noise
(b). Results are shown for the case where we find the HRF in the optimization
procedure (‘OPT’) and for the case where we fix the HRF to the canonical
HRF (‘CAN’).

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 29



TABLE I
PEARSON CORRELATION BETWEEN ESTIMATED AND TRUE HRF.

time of 1st peak peak separation dispersion relative amplitude

2 s 0.71±0.31 5 s 0.81±0.28 2 s 0.70±0.35 0 0.88±0.23
4 s 0.94±0.03 10 s 0.90±0.20 5 s 0.90±0.19 0.2 0.81±0.31
6 s 0.95±0.05 15 s 0.81±0.29 8 s 0.91±0.17 0.6 0.83±0.25
8 s 0.93±0.09

10 s 0.66±0.41

given as the mean ± one standard deviation of the pooled

results, when only the indicated parameter is fixed. In general,

the algorithm succeeds reasonably well in capturing the HRF

waveform, admitting a decrease in performance when the true

HRF differs substantially from the initial guess (which was

the canonical HRF, in our case). We note that there was a

significant dependence (correlation 0.84) between the average

Dice coefficient and the correlation between true and estimated

HRF. This confirms findings of previous research, which

pointed out the potential bias resulting from HRF mismodeling

[5], [6], and elicits the importance of HRF estimation.

Robustness versus spatially/temporally non-white noise

Fig.6b shows the mean Dice coefficients under the effect

of spatially (SpCorr) or temporally (TempCorr) correlated

noise. Interestingly, the spatial extent of the neural sources

is estimated more accurately under AR(1) noise conditions, or

under spatially correlated noise, compared to WGN conditions,

especially at lower SNR. No significant difference in quality of

the extracted EEG signatures was observed between conditions

when the HRF was co-estimated, but using the canonical HRF

led to an increase in relative error of ±10-15% in all modes.

IV. DISCUSSION

We have demonstrated that accounting for HRF variability

has a beneficial effect on the estimation of spatial, temporal,

and spectral aspects of neural sources from combined EEG-

fMRI measurements. For this purpose, we have introduced

a data-driven framework based on structured matrix-tensor

factorization, which can be used to identify patterns of neural

activity. It is generic in the sense that it describes neural-

hemodynamic coupling solely by means of a convolution

operation with an initially unknown HRF, and thus mini-

mally makes assumptions on the neural sources of interest,

adhering to the idea of blind source separation. Any prior

model for the nature of the HRF can be plugged in, as

long as it can be expressed as an explicit and differentiable

function of some parameters [18]. Complete flexibility can

be attained by not imposing any model for h(t), which is

conceptually the same as the ‘FIR basis set’ method [8], while

the GLM can be mimicked by fixing h(t) to the canonical

HRF. In this paper, we have chosen a model consisting of

two gamma functions, because of its simplicity and similarity

to the often-used canonical HRF. While several methods have

been proposed to find the HRF from the experimental data,

they often require to re-estimate the HRF voxel by voxel

[6]–[8], which is tedious and precludes easy interpretation.

Instead, our proposed method seeks to find one HRF, which

leads to the best fit for the whole dataset. Nonetheless, the

framework allows to deal with variation of neurovascular

coupling over brain regions, in a way that is analogous to

well-known approaches which use a basis set of HRF functions

[6], [8]. This is achieved by extending the fMRI factorization

as Y = H1AV
T
1 +H2AV

T
2 + . . .+HBAV

T
B , in which B

basis functions h1(t) to hB(t) are used. Hence, the BOLD

response is described as a voxel-specific linear combination

over basis functions - as well as over different neural sources,

like in the simple case. Many other adaptations of this frame-

work can be conceived, depending on the context of the data

(e.g. event-related or resting state EEG-fMRI experiments),

the desired flexibility, and the type of information which one

tries to extract. This is the subject of future work.
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