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Abstract—In this paper, we consider a practical signal trans-
mission application with fixed power budget such as radar/sonar.
The system is modeled by a linear equation with the assumption
that the signal energy per measurement decreases linearly and the
noise energy per measurement increases approximately linearly
with the increasing of the number of measurements. Thus the
SNR decreases quadratically with the number of measurements.
This model suggests an optimal operation point different from the
common wisdom where more measurements always mean better
performance. Our analysis shows that there is an optimal number
of measurements, neither too few nor too many, to minimize the
mean-squared error of the estimate. The analysis is based on a
state evolution technique which is proposed for the approximate
message passing algorithm. We consider the Gaussian, Bernoulli-
Gaussian and least-favorite distributions in both real and complex
domains. Numerical results justify the correctness of our analysis.

Index Terms—Approximate message passing, compressed sen-
sing, state evolution, signal recovery.

I. INTRODUCTION

The problem of estimating a signal from its linear me-

asurements has been studied for many decades. When the

unknown signal is sparse, compressed sensing (CS) theory [1],

[2] shows that the number of measurements can go below the

dimension of the signal leading to an underdetermined linear

measurement system. Low complexity algorithms to solve the

resulting sparse recovery problem include greedy algorithms,

for example orthogonal matching pursuit (OMP) [3], subspace

pursuit (SP) [4] and compressive sampling matching pursuit

(CoSaMP) [5], ℓ1-norm minimization [6], and more recently

approximate message passing (AMP) [7]. CS has been widely

used in under-sampling [7], [8], imaging and localization [9]–

[11], and sparse learning [12].

This paper focuses on a system design inspired by practical

scenarios where the total energy budget of the linear measu-

rements is fixed, the signal energy per measurement decreases

linearly and the noise energy per measurement increases

approximately linearly with the number of measurements. This

scenario arises in many active sensing applications where

measuring means observing the responses of a physical system

to the stimulants that we actively put in. One example is

radar systems. The number of measurements could correspond

to the number of pulses per unit time (pulse frequency) or

the number of sub-channels in the entire spectrum. When

the number of measurements is increasing, the signal energy

per measurement (per pulse/sub-channel) is decreasing linearly

with the number of measurements. For the measurement noise,

we adopt the commonly used additive white Gaussian noise

model. Based on the famous thermal noise effect, the noise po-

wer (given by kTB [13]) increases approximately linearly with

the number of measurements. With the above assumptions, the

SNR per measurement should decrease quadratically if we add

more measurements. Our goal in this paper is to address this

trade-off and determine the optimal number of measurements.

It is worth noting that although this paper focuses on sparse

signals, the same trade-off exists for non-sparse signals as we

show in Section IV.

The main contribution of this work is to find the exact

optimal number of measurements required to minimize the

mean-squared error (MSE) under certain mathematical as-

sumptions. For the purpose of analysis, we assume a Gaussian

measurement matrix, i.e., the elements in the measurement

matrix are independently drawn from a Gaussian distribution.

Let m be the number of measurements, n be the dimension

of the unknown signal, and S be the number of non-zero

elements. Further, let m, n, S → ∞ with constant ratios

δ := m
n

and ǫ := S
n

(sparsity level). We consider the MSE

distortion metric. By characterizing the asymptotic distortion

as a function of the normalized number of measurements δ,

one can find the optimal number of measurements δ† that

minimizes the distortion. The δ† may be directly achieved

by a closed-form formula or by numerical calculation which

depends on the statistics of the unknown signal. In order to

provide intuition about the value of δ† for different unknown

signals, we study upper bounds on δ† for three typical signal

models: Gaussian, Bernoulli-Gaussian and least-favorite dis-

tributions in both real and complex domains. The first two

signal models are commonly used for non-sparse and sparse

signal analysis, respectively. The third model is used for worst

case analysis meaning the resulting MSE performance is an

upper bound on that of signals with arbitrary distribution

with the same sparsity level. The worst case analysis result is

pessimistic in general but at the same time universal. Analysis

shows that for all three models, in both real and complex

domains, the optimal value of δ† is upper bounded by 2.

Our results are based on the AMP algorithm and the

associated state evolution analysis. It is noteworthy that though

the rigorous derivation of state evolution of AMP requires a

random Gaussian matrix, many works have demonstrated that

the same results are relatively accurate for partial Fourier and

Rademacher matrices [7], [14] when the sizes of these matrices

are sufficiently large. Numerical results justify the correctness

and the accuracy of the asymptotic analysis.
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II. PROBLEM FORMULATION

A. System Model

Consider a signal transmission system with fixed power
budget such as radar/sonar. If we transmit/receive a signal
with more measurements m then the energy allocated to
each single measurement is reduced. Thus, we assume the
signal variance is proportional to m−1. This effect can be
modeled by multiplying each measurement by a factor of
1/

√
m. In addition, based on [15], when considering the noise

power of a signal receiving system such as radar, an adequate
assumption is that the receiving system is ideal and only
consider the thermal noise. A higher sampling rate means a
larger bandwidth which results in a larger thermal noise with
power increasing approximately linearly with m [13]. Let H
represents the real (R) or complex (C) domain. The system is
modeled as

y = Ax+w, (1)

where y ∈ H
m denotes the observation vector; A ∈ H

m×n is
the standard Gaussian random matrix with elements scaled by
1/

√
m; x ∈ H

n represents the unknown signal and w ∈ H
m

is additive Gaussian noise with mean zero and variance

σ2
w := δσ2

0 , (2)

where δ := m
n

and σ2
0 is a constant. Let x̂ be the estimated

signal. The performance of the system is given by the MSE

Err := lim
n→∞

1

n
‖x− x̂‖2 . (3)

In particular. we are interested in the value of δ that minimizes

the MSE (3). We consider the system model (1) for both non-

sparse and sparse signals.

B. Non-Sparse Setting

For the non-sparse setting, we consider the widely used
Gaussian model as an example. The asymptotic MSE analysis
for the traditional problem is well known. Assume that A is
a Gaussian random matrix with i.i.d. elements drawn from
N
(

0, 1

m

)

when H = R (or CN
(

0, 1

m

)

when H = C), x is
drawn from N

(

0, σ2
xI
)

when H = R (or CN
(

0, σ2
xI
)

when

H = C) and the noise w is drawn from N
(

0, σ2
wI
)

when

H = R (or CN
(

0, σ2
wI
)

when H = C). The asymptotic MSE
of the minimum MSE (MMSE) estimator can be directly
calculated based on random matrix theory [16]. Denoting

c = (1−δ)
δ

, we have

lim
n→∞

1

n
‖x−x̂‖2= δ

2

[

(

−σ2
w+cσ2

x

)

+

√

(σ2
w+cσ2

x)
2+4σ2

wσ2
x

]

. (4)

By replacing the noise variance with our model (2), a trade-off

between MSE and δ is achieved. Figure 1 plots an example,

where we set σ2
x = 1 and vary the value of σ2

0 . For each given

σ2
0 , by increasing the number of measurements, the MSE first

decreases until reaches the optimal point; further increasing

the number of measurements, the MSE becomes larger.

For sparse signals, we want to find a similar relationship,

taking into account the nonlinear property of the sparse

decoder. Instead, we use the state evolution technique of the

well known AMP algorithm [7], [16]. Although AMP was

originally proposed for solving CS problems in which the

unknown signals are assumed to be S-sparse, we will show

that the same analysis is also valid for non-sparse signals in

Section IV-C.

Figure 1: Trade-off for Gaussian signals.

III. APPROXIMATE MESSAGE PASSING

The AMP algorithm was first proposed in [7] to solve
(1) in the CS scenario. It, iteratively applyies the following
equations:

x
t+1 = η

(

A
∗
r
t + x

t
)

, (5)

r
t = y −Ax

t +
1

δ

〈

η′
(

A
∗
r
t−1 + x

t−1
)〉

r
t−1, (6)

where xt denotes the t-th estimation of the signal; η (·) is a
component-wise estimator particularly designed based on the
statistical information of its input argument; A∗ stands for
the (conjugate) transpose of A; η′ represents the first order
derivative of η, and 〈v〉 := 1

n

∑n
i=1 vi computes the average.

The last term of (6)

Onsager :=
1

δ

〈

η′
(

A
∗
r
t−1 + x

t−1
)〉

r
t−1, (7)

is called the Onsager term. The input of η (βt) can be written
as the ground truth signal x plus an equivalent noise wt

e:

β
t := A

∗
r
t + x

t = x+w
t
e. (8)

By the effect of the Onsager term and the assumption of
an i.i.d. Gaussian random matrix A, the equivalent noise
will always be approximately Gaussian and the statistical
information can be calculated based on the formula:

w
t
e := (A∗

A− I)
(

x− x
t
)

+A
∗
w, (9)

where (A∗A− I), (x− xt) and A∗w are mutually indepen-

dent.
At each iteration t, we first update the estimated signal

xt by a particularly designed η function which requires the
knowledge of the equivalent noise wt−1

e . We than calculate
MSE based on the current estimated signal xt . Next, we
update the knowledge of the equivalent noise wt

e according to
(9) by

(

σt
e

)2
=

1

δ
Errt + σ2

w (10)

where σt
e is the standard deviation of wt

e. The calculation of

Errt will be talked about later. This updated knowledge of wt
e

will be used to generate a new signal estimation xt+1 in the

next iteration.

IV. ANALYSIS IN REAL DOMAIN

In this section, we analyze the relationship between MSE

and δ (or equivalently m) in the real domain for both least-

favorite and Bernoulli-Gaussian distributions. Then we extend

the analysis to the complex domain in the next section. We
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first consider a realistic situation in which the only prior

information on the unknown signal is that, it is sparse. The

analysis in this case will provide a worst case universal solu-

tion. A designed decoder based on a given signal distribution

should outperform the universal decoder. To study this case,

we consider the Bernoulli-Gaussian distribution.

A. Least-Favorite Distribution (Worst Case Signal)

The worst case analysis of the AMP algorithm [7], [17]
is applied by minimizing the MSE for the least-favorite
distribution

px =
ǫ

2
∆x=−∞ + (1− ǫ)∆x=0 +

ǫ

2
∆x=+∞ (11)

where ∆ denotes the Dirac delta function and ǫ ∈ (0, 1] is
the sparsity level. The MMSE estimator of the least-favorite
distribution, based on (8) , is the soft thresholding function

η
(

βt
i , λ

t
)

=











βt
i − λt βt

i > λt

0 − λt ≤ βt
i ≤ λt

βt
i + λt βt

i < −λt.

. (12)

The optimal threshold is defined by

λt := α†σt
e, α† = arg min

α∈R+

M (ǫ, α)

M (ǫ, α) :=ǫ
(

1+α2
)

+(1−ǫ)
[

2
(

1+α2
)

Φ (−α)−2αφ (α)
]

, (13)

where φ(x) is the standard Gaussian density and Φ(x) =
∫ x

−∞
φ(t)dt is the corresponding cumulative distribution

function. The MSE of estimation at each iteration can be
calculated by

Errt = M
(

ǫ, α†
)

(

σt
e

)2
. (14)

We apply the above results to our system model and achieve

the following theorem

Theorem 1. For a linear measurement system (1) with signal
model (11) and additive white Gaussian noise with variance
(2), apply AMP algorithm with estimator (12). By the conver-
gence assumption of (10), we have

δ† = 2M
(

ǫ, α†
)

, (15)

which is independent of the noise variance.

B. Bernoulli-Gaussian Distribution

Next we consider the Bernoulli-Gaussian prior [8], [18],
[19] with probability density given by

px = (1− ǫ)∆x=0 + ǫpG
(

x; 0, σ2
x

)

, (16)

where pG
(

x; 0, σ2
x

)

represents the Gaussian density with mean

0 and variance σ2
x.

The η function can be designed based on the prior informa-

tion of x. Let Rt := σ2
x/
(

(

σt
e

)2
+ σ2

x

)

and define

I
(

Rt, ǫ
)

:=

∫

φ (x)

1 + 1−ǫ
ǫ

1√
1−Rt

exp
(

− Rt

1−Rt

x2

2

)x2dx. (17)

The component-wise function η can be chosen as the MMSE
estimator, for each element of βt:

η
(

xt
i|βt

i

)

:=
pG
(

βt
i ; 0,

(

σt
e

)2
+ σ2

x

)

p (βt
i )

ǫRtβt
i , (18)

with p
(

βt
i

)

:=(1− ǫ) pG
(

βt
i ; 0,

(

σt
e

)2
)

+ǫpG
(

βt
i ; 0,

(

σt
e

)2
+σ2

x

)

.

The corresponding derivative of η (xt
i|βt

i ) is complicated, here
we only give the final result. For simplicity of notation, define

v1 :=
1− ǫ

ǫ

√

(σt
e)

2+σ2
x

(σt
e)

2
, v2 :=

Rt

(σt
e)

2
, v3 :=v1 exp

(

−1

2
v2
(

βt
i

)2

)

,

we have η′
(

xt
i|βt

i

)

= Rt/ (v3 + 1)+Rtv3v2
(

βt
i

)2
/ (v3 + 1)2 and

Errt :=

[

Rtǫ

1−Rt

(

1−RtI
(

Rt, ǫ
))

]

(

σt
e

)2
. (19)

Fast calculation of Errt: We can increase the efficiency of
AMP algorithm by avoiding the integration of (17). Based on
Lemma 2, Errt can be approximately calculated by

Errt ≈
[

1

n

n
∑

i=1

η′
(

xt
i|βt

i

)

]

(

σt
e

)2
. (20)

Lemma 2. [20, Lemma 2] Consider a random variable U
with a conditional probability density function of the form
pU |V (u|v) := 1

Z(v)exp (φ0 (u) + uv) , where Z (v) is a nor-

malization constant, Then,

∂

∂v
logZ (v) = E [U |V = v]

∂2

∂v2
logZ (v) =

∂

∂v
E [U |V = v] = var (U |V = v) .

There is no closed form of Errt, thus we can’t directly

achieve the optimal δ† as in Theorem 1. On the other hand,

when AMP converges, Errt and σt
e will converge to fixed

points Err∞ and σ∞
e , respectively. Based on the relationship

between Err∞ and σ∞
e given in (19), the optimal δ† can be

obtained by the following theorem.

Theorem 3. For a linear measurement system (1) with
signal model (16) and additive white Gaussian noise with
variance (2), apply AMP algorithm with estimator (18). For
any given set of parameters {ǫ, σ∞

e , σ2
x, σ2

0} such that
(σ∞

e )4−4σ2
0Err∞ ≥ 0, by the convergence assumption of (10),

we have

δ =
(σ∞

e )2 ±
√

(σ∞
e )4 − 4σ2

0Err∞

2σ2
0

. (21)

The optimal δ† is achieved when (σ∞
e )4 = 4σ2

0Err∞.

C. Non-Sparse Case (Gaussian)

The state evolution analysis for sparse signals is also valid
for non-sparse cases by considering the Bernoulli-Gaussian
prior with ǫ = 1. In this case, (17) will degenerate to
the variance of a standard Gaussian distribution which is a
constant with value equal to 1. The estimated error (19) then
has a closed form

Errt = Rt
(

σt
e

)2
. (22)

Substituting (22) into (10) and setting σt
e = σt+1

e = σ∞
e ,

leads to the optimal value:

σ∞
e =

(

cσ2
x + δσ2

0

)

+
√

(cσ2
x + δσ2

0)
2 + 4σ2

xδσ
2
0

2
,

where c := (1−δ)
δ

. We ignore the negative value due to the
non-negative property of the error. The final estimation error
at the fixed point will be

Err∞ = δ
(

(σ∞
e )2 − δσ2

0

)

which is exactly the same as (4).
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V. ANALYSIS IN COMPLEX DOMAIN

The analysis in the complex domain follows the same line

as it in the real domain but we need to take care of the

modifications.
For least-favorite distribution: The complex AMP

(CAMP) algorithm for least-favorite distribution has been ana-
lyzed in [21] providing a new Onsager term. The least-favorite
distribution becomes p|x| = (1− ǫ)∆|x|=0 + ǫ∆|x|=+∞ with
the assumption that the phase of x is isotropic and based on
[21], the η function will be,

η
(

βt
i , λ
)

:=

(

βt
i −

λ
(

βt
i

)

|βt
i |

)

1{|βt

i |>λ} (23)

where 1{|βt

i |>λ} denotes the indicator function. The formula

of ErrC,t will be the same as in real case but with a new
MC (ǫ, α) function:

MC (ǫ, α) :=ǫ
(

1+α2
)

+(1−ǫ)
[√

2πφ
(√

2α
)

−2α
√

πΦ
(

−

√

2α
)]

.

(24)

Compare (24) with (13), we can find the estimation error of

non-zero components of signal are the same (first term). The

difference between them comes from the de-noising for the

zero components of signal (second term). For the complete

derivation of new Onsager term and calculation of η′ (βt
i , λ),

please refer to [21].
For Bernoulli-Gaussian distribution: We assume that the

real part and imaginary part of a complex variable share the
same mean and variance and they are uncorrelated. For exam-

ple, let x ∼ CN
(

µ, σ2
x

)

, then we have (x)R , (x)I ∼ N
(

µ,
σ2
x

2

)

.

Under this assumption, we have

pCG

(

x;µ, σ2
x

)

= pG

(

(x)R ;µ,
σ2
x

2

)

pG

(

(x)I ;µ,
σ2
x

2

)

=
1

πσ2
x

exp

(

−|x− µ|2
σ2
x

)

, (25)

and the Bernoulli-Gaussian distribution in the complex domain
becomes p(x) = (1− ǫ)∆|x|=0 + ǫpCG (x). For the estimate
function η, we just replace the pG probability in (18) with

pCG defined above. Now let ptβ,1 := pCG

(

βt
j ; 0, (σ

t
e)

2
+ σ2

x

)

, ptβ,2 := pCG

(

βt
j ; 0,

(

σt
e

)2
)

, ptβ,3 := (1− ǫ) ptβ,2 + ǫptβ,1 and

pto := − 2
σ2
x
+(σt

e
)2
ptβ,3 +

2(1−ǫ)
σ2
w

ptβ,2 +
2ǫ

σ2
x
+(σt

e
)2
ptβ,1 , the four

derivatives of η can be calculated based on the following
formulas:

∂ηR
(

βt
j

)

∂
(

βt
j

)R
=

pto
(

ptβ,3

)2
ptβ,1ǫR

(

(

βt
j

)R
)2

+
ptβ,1
ptβ,3

ǫR (26)

∂ηR
(

βt
j

)

∂
(

βt
j

)I
=

∂ηI
(

βt
j

)

∂
(

βt
j

)R
=

pto
(

ptβ,3

)2
ptβ,1ǫR

(

βt
j

)R (

βt
j

)I
(27)

∂ηI
(

βt
j

)

∂
(

βt
j

)I
=

pto
(

ptβ,3

)2
ptβ,1ǫR

(

(

βt
j

)I
)2

+
ptβ,1
ptβ,3

ǫR, (28)

Finally, (19) will be replaced by

ErrC,t =

[

Rtǫ

1−Rt

(

1−RtIC
(

Rt, ǫ
))

]

(

σt
e

)2
, (29)

IC
(

Rt, ǫ
)

=

∫

xR

∫

xI

φC (x)

1 + 1−ǫ
ǫ

1

1−Rt exp
(

− Rt

1−Rt |x|2
) |x|2 dxIdxR

(30)

where φC (x) = pCG (x; 0, 1) is the standard complex normal

distribution. (29) and (19) are exactly the same except the

integration terms.
Fast calculation of ErrC,t: The same as in the real domain,

we can efficiently calculate Equation (29) by focusing on the
real part of the signal only,

ErrRC,t ≈
1

n

n
∑

i=1

(

∂ηR
(

βt
j

)

∂
(

βt
j

)R

)

(

σt
e

)2

2
(31)

ErrC,t ≈ 2ErrRC,t =
1

n

n
∑

i=1

(

∂ηR
(

βt
j

)

∂
(

βt
j

)R

)

(

σt
e

)2
(32)

which based on the assumption that the real part and imaginary

part of the complex random variable are i.i.d..

The optimal δ† can be achieved by using the same theorems

in section IV, just replacing M
(

ǫ, α†
)

and Errt functions with

MC

(

ǫ, α†
)

and ErrC,t, respectively.

VI. DISCUSSION AND NUMERICAL JUSTIFICATION

A. Discussion on the optimal of δ†

The optimal δ† for least-favorite distribution can be directly

achieved by (15) while for Bernoulli-Gaussian, δ† only can

be achieved by numerically calculation. In order to find the

common attribute of δ† and get an intuition about the possible

outcome of δ† for different kinds of signals, we analysis

the upper bounds for Gaussian, Bernoulli-Gaussian and least-

favorite distributions.

Let’s focus on the real domain first. For the Gaus-

sian case, based on (4), we are able to achieve δ† =
(

√

σ4
x/σ

4
0 + 16σ2

x/σ
2
0 − σ2

x/σ
2
0

)

/4 which will monotonically

decrease for increasing σ0 ∈ (0,∞] and δ† is upper bounded

by 2. For the least favorite distribution, based on Theorem

1 and the fact that M
(

ǫ, α†
)

∈ (0, 1], a same upper bound

can be achieved. For the Bernoulli-Gaussian case, based on

Theorem 3, δ† will increase by the increasing of Err∞ which

is upper bounded by Gaussian case. Thus δ† is also upper

bounded by 2. Same performance can be achieved in the

complex domain. The detailed proof will be provided in our

upcoming paper.

B. Numerical Justification

For the simulation, we set n = 1000, σ2
0 = 0.01 as

constants. Each simulation point is the average of 100 in-

dependent trials. The simulation results provided in Fig. 2

show the relationship between the MSE and the measurement

ratio δ for a given sparsity level ǫ. From the figure, one can

observe that when δ increases at the beginning, the MSE

decreases dramatically until it reaches a minimum. After that,

further increase in δ will enlarge the MSE. This phenomenon

verifies our presumption that there exists an optimal δ† (or

m†) for a power fixed signal transmission system. The overall

performance of Bernoulli-Gaussian distribution is better than

the one of least-favorite distribution which coincides with our

explanation at the beginning of Section V. The numerical

results of Bernoulli-Gaussian signals match the theoretical

curves quite well but for the least-favorite distribution, the

numerical results are slightly larger than the theoretical curves.
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Figure 2: MMSE vs δ

The main reason is that for the theoretical analysis in this case,

we assume that the values of the non-zero coefficients are ±∞,

but in simulations, these values can only be set as certain large

numbers which results in a lower SNR compared with the

one in the theoretical case. For both signal distributions, the

moving trends of δ† for different ǫ values coincide with above

optimal analysis.
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