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Université de Nantes, France
Email: saurabh.puri@technicolor.com
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Abstract—Recent work in video compression has shown that
using multiple 2D transforms instead of a single transform
in order to de-correlate residuals provides better compression
efficiency. These transforms are tested competitively inside a
video encoder and the optimal transform is selected based on the
Rate Distortion Optimization (RDO) cost. However, one needs to
encode a syntax to indicate the chosen transform per residual
block to the decoder for successful reconstruction of the pixels.
Conventionally, the transform index is binarized using fixed
length coding and a CABAC context model is attached to it. In
this work, we provide a novel method that utilizes Convolutional
Neural Network to predict the chosen transform index from the
quantized coefficient block. The prediction probabilities are used
to binarize the index by employing a variable length coding
instead of a fixed length coding. Results show that by employing
this modified transform index coding scheme inside HEVC, one
can achieve up to 0.59% BD-rate gain.

I. INTRODUCTION

Transforms are a key element in all block-based video
coding system which in conjugation with quantization, is
important for the overall compression efficiency of the system.
Historically, the transform coding part in a video codec has
remained conservative in order to keep the complexity low.
Recent works have shown that it is possible to gain substan-
tially by using adaptive multiple transforms instead of a single
transform. These multiple transforms are either (1) systematic
fixed transforms [1], [2], (2) learned offline on a large training
set [3]–[5] or (3) learned on-the-fly [6].

The motivation to use multiple or adaptive transforms comes
from the fact that a single transform is not efficient to model
different statistical variations that may be present in an intra-
predicted residual [4]. By using multiple transform candidates,
the encoder is given a choice to select the transform for
a particular residual block that provides minimum cost in
terms of both rate and distortion. This is usually done using
an exhaustive Rate Distortion Optimization (RDO) search.
However, this complexifies the encoder significantly due to
the many possible combinations of coding modes. Several
schemes have been proposed to reduce the encoder complexity
[7].

The multiple transform schemes proposed in the literature
falls into two categories depending on whether or not an
additional syntax to indicate the choice of the transform is
added to the bitstream. If not, this information is implicitly
derived from the causal information available at the decoder

side. If yes, the index is explicitly encoded in the bitstream.
It has been shown in the literature that this additional syntax
has a huge impact on the overall performance of the scheme.
In particular, the impact is maximum for small residual blocks
of size 4×4 [8].

Therefore, in order to reduce the overhead of transmitting
the syntax, this work aims to predict the transform index from
the causal part of the bit-stream. In the proposed method,
the quantized transform coefficient block (TCB) is utilized
to predict the index as it is available at the decoder and is
parsed before the parsing of the transform index. Predicting
the transform index can be seen as a classification problem
where each TCB belongs to a class labeled by its transform
index.

Deep convolution neural networks (CNNs) have shown
remarkable results in classification tasks where the correlation
is not easy to model through simple linear models [9]. For this
reason, a CNN is utilized to model the correlation between the
TCB and the transform index.

Therefore, our contribution involves designing a novel
CNN-based transform index prediction method that is trained
on a large offline dataset containing a large collection of TCBs
from different transforms. We have implemented the trained
CNN inside the video codec to perform the classification, and
the prediction from the CNN is used to improve the entropy
coding of the syntax.

This paper is organized as follows: Section II will provide
some of the recent related works. Section III will detail
the proposed CNN-based transform index prediction method.
Section IV will present the CNN architecture used to train the
model. Finally, simulation results will be presented in section
V.

II. RELATED WORKS

Video compression in virtually any video codec is mainly
achieved by employing prediction followed by entropy coding
of the residual. The prediction is usually computed using
the causal information that is available to both encoder and
decoder. By designing a better prediction model, one may
achieve higher compression. However, it is extremely difficult
to construct a model when there is no prominent pattern in
the signal. For such cases, neural networks are suspected to
be more efficient and therefore, many interesting works have
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Fig. 1: Block Diagram of proposed CNN-based transform index coding

emerged recently that utilize CNN based model to extract
difficult features or characteristics present inside data.

Most of the recent works are focused on making early
decisions to speed-up the encoding process. A work carried
by Yu et. al. in [10] proposes to use CNNs to provide a binary
decision on whether to split the block or not by taking into
consideration several features extracted from the block. Similar
works have been carried in [11], [12] where a CNN is used to
make a-posteriori decision of splitting of coding unit (CU) and
prediction unit (PU) blocks. Laude et. al. in [9] have shown
that one can mimic the intra-prediction mode decision taken by
RDO using a CNN model which is trained on a large training
set.

Our work is related to the above works as we utilize CNNs
to perform a classification of coding modes. However, in this
work, CNNs are used specifically for the transform index
prediction. Moreover, the decision of the CNN is used to
drive the entropy coder inside the codec. Finally, in this work,
the quantized coefficients obtained after the transform and
quantization step are used as the input features instead of the
hand-crafted features as done in some of the related works. The
features are extracted using CNN learning process which is
able to model the complex structures present in the coefficient
block.

III. PROPOSED CNN-BASED TRANSFORM INDEX
PREDICTION

In this section, we describe our novel CNN-based transform
index prediction method which is employed at both encoder
and decoder sides. Firstly, the multiple transform competition
scheme (MDTC) as proposed in [5] and various indexing
schemes proposed in the literature that are considered as
baseline for our method are described. Then, the proposed
transform index coding scheme is detailed.

The MDTC scheme proposed in [5] tests N offline learned
transform matrices in competition with the core HEVC trans-
form (DCT/DST) inside a RDO loop and selects the transform
matrix that provides the minimum RD cost. A transform index
is coded to indicate the choice amongst N+1 transforms to the
decoder for proper reconstruction of the block. This is done
by first coding a flag that indicates whether the DCT/DST
transform is used or not. If the flag stipulates it is not, the
offline learned transforms are used and a fixed length coding
is used. The scheme clearly favors the DCT/DST as it requires
fewer bits to encode.

An alternative way of signaling the transform choice would
be to directly binarize the transform index using a fixed length
coding, to indicate N+1 transform candidates on b bits where

b = ceil(log2(N + 1))

These bits are entropy coded using CABAC. This approach
does not favor DCT/DST over offline learned transforms inside
the RDO loop. In this work, this indexing scheme is used as
a baseline in order to compare the new proposed indexing
scheme.

In the proposed scheme, a variable length coding is used
instead of a fixed length coding as done in the literature so
far. A pre-trained CNN-based model is used to predict the
probabilities of a particular transform index which is then
used to construct a truncated unary code per block. Figure
1 illustrates the block diagram of the CNN-based transform
index coding scheme for a 4×4 luma residual block X . The
blocks highlighted in red in figure 1 shows the modifications
over the fixed length coding. Inside the modified HEVC codec
[5], the core DST transform (T0) is tested in competition with
offline learned transforms (T1 to TN ). The CNN-based model
is put inside an RDO loop which takes quantized coefficients
cq as input and outputs a vector p of probabilities of predicting
a particular transform index i. The vector p is utilized to
construct a truncated unary code which is simply done by
re-arranging the probabilities in p in the decreasing order and
using minimum bits (1 bit) for the transform index that is
predicted with highest probability and maximum bits (N bits)
for least probable transform index.

In order to understand it better, let us consider N to be equal
to 3. The residual X is tested with four transform candidates
(i.e. T0 to T3) and in each case, the quantized coefficient
is passed through the pre-trained CNN model to obtain the
probabilities. Let us suppose that T2 is the selected transform,
the residual block is thus transformed with T2. The quantized
coefficients cq of the transformed block are passed through
the trained CNN model which outputs the probability values,
say [0.15, 0.1, 0.45, 0.30]. Table I shows the truncated unary

Transform Index Probabilities Truncated Unary Code
2 0.45 0
3 0.30 1 0
0 0.15 1 1 0
1 0.10 1 1 1

TABLE I: Truncated Unary Code for example I
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Fig. 2: Proposed CNN architecture for classification of transform index using 4×4 size coefficient block

Transform Index Probabilities Truncated Unary Code
2 0.45 0
0 0.30 1 0
3 0.15 1 1 0
1 0.10 1 1 1

TABLE II: Truncated Unary Code for example II

code for this example I. In this case, the original index 2 is
well predicted by the CNN model and therefore, only 1 bit is
coded, namely ‘0’.

In another example with N=3 and T0 being the selected
transform, the quantized coefficients of the transformed block
are passes through the trained CNN model which outputs the
probability values, say [0.30, 0.1, 0.45, 0.15]. Table II shows
the truncated unary code for this example. In this case, the
original index 0 is coded in the bitstream with 2 bits, namely
‘10’.

It should be noted that the performance of this approach
greatly depends on the classification accuracy of the CNN
model that is designed for the task of classifying different
transform candidates using the quantized coefficients.

Therefore, the algorithm involves two major steps:
1) offline training of the CNN model per intra prediction

direction on a large independent data set as described in
section IV, and

2) applying the trained CNN model inside the HEVC RDO
search to predict the transform index as described in this
section

In the next section, the architecture of different layers of
the CNN is described in detail along with the method to train
the CNN-models for different intra-prediction directions.

IV. ARCHITECTURE AND TRAINING OF CNN MODELS

In this section, we will describe the CNN-architecture
as illustrated in Figure 2 for a 4×4 coefficient block. As
mentioned in the previous section, the performance of the
proposed scheme relies on the classification accuracy of the
CNN-models trained offline on a large data set. The selection
of training parameters for the model is therefore a critical part
in the design of the method.

Table III summarizes all the model parameters chosen for
different CNN layers. The architecture is inspired from laude

et. al. [13] which was adapted to handle smaller input block
sizes of a block based codec. The capacity of the network has
been further reduced by using fewer filters and neurons and by
using even smaller filter size of 2×2. However, one additional
fully connected layer with 36 neurons has also been added.

The first convolutional layer takes coefficient block of size
4×4 as input and is passed through 32 filters of size 2×2 and
a stride of one. The second convolution layer operates over the
output of the first layer which uses 64 filters of size 2×2 and
stride of one. A max-pooling layer is used to reduce the size to
2×2×64. This is then fed to the fully connected layers with 36
perceptron. The final softmax layer outputs the probabilities.

This CNN model is trained using Keras framework which
is a well-known high-level python neural network library that
runs on top of TensorFlow or Theano [14]. Keras is config-
ured to use Theano as the backend. Additionally, the model
parameters are optimized by using gradient-based optimizer
called Adam [15] which is available in Keras.

In order to improve the prediction accuracy of the CNN
model, following pre-processings of the training samples are
performed.

• Firstly, training samples have been extracted from an in-
dependent dataset [16] which contains images of various
buildings.

• only coefficient blocks with at-least 3 non-zero coeffi-
cients are considered.

• the coefficient blocks where the above and left samples
are not available are not taken into account.

Layer Type Outputs Filter size Stride
1 Convolutional C1 32 2x2 1
2 ReLU - - -
3 Convolutional C2 64 2x2 1
4 ReLU - - -
5 Max Pooling S3 64 2x2 2
6 Flatten 256 - -
7 Fully-connected 36 - -
8 ReLU - - -
9 Fully-connected 36 - -

10 ReLU - - -
11 Fully-connected 2 - -
12 Softmax - - -

TABLE III: Parameters of CNN models
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Fig. 3: Training and Validation loss curves using CNN based
learning

Accuracy for N=1 N=3
IPM 26 Validation Test Validation Test

CNN 0.75 0.72 0.54 0.45
PCA 0.71 0.67 0.43 0.37

TABLE IV: Trained CNN-model classification accuracy

• Finally, imbalanced classes are avoided by manually
balancing the number of coefficients in each class.

V. SIMULATION RESULTS

The proposed CNN-based transform index coding scheme
has been implemented and evaluated in the HEVC test soft-
ware HM version 15.0 which is modified to test multiple
transform candidates inside the RDO loop similar to [5]. Two
sets of results from various experiments are presented: binary
classification (N=1) and general case (N=3) for only 4×4
luma intra residual block size. For all experiments, all-intra
(AI) configuration as per HEVC CTC [17] is used.

For the training of the CNN-model, we have taken the
Zurich Building dataset [16] which contains over 1000 im-
ages in PNG format that are converted to a YUV format
of resolution 640×480. The selected transform index based
on RDO at the encoder is used to label the corresponding
quantized coefficient block in order to obtain the training
classes. Only four CNN-models are trained on the four major
intra-prediction modes (IPM), namely DC, Planar, Vertical and
Horizontal. Training is done on a batch of 32 TCBs and the
number of iterations on the data set is set as 20.

In the first experiment, the performance of the training
process in terms of classification accuracy on both validation
and test data set is evaluated. The validation data set is
generated by choosing randomly 10% of the data samples
from the training set and is not used for training the model.
Validation data set prevents over-fitting. The test data set is
generated from the first frame of the HEVC CTC sequences
[18]. Figure 3 shows the classification loss curve for both
training and validation data set. Clearly, both training and
validation loss reduce with the number of iterations over the
batch of TCB.

Table IV shows the CNN-model classification accuracy for
both N=1 and N=3 in case of vertical IP mode (i.e. IPM
26). For comparison, the classification accuracy of using a
Principle Component Analysis (PCA) along with a decision

Class Sequence EP CTXT CNN NoIndex
A Nebuta -0.32 -0.28 -0.28 -0.20

PeopleOnStreet -0.71 -0.73 -0.80 -1.16
SteamLocomotive 0.02 -0.01 -0.02 -0.11

Traffic -0.81 -0.77 -0.84 -1.19
Overall -0.45 -0.45 -0.49 -0.66

B BasketballDrive -0.38 -0.57 -0.54 -0.42
BQTerrace -1.62 -1.65 -1.79 -2.22

Cactus -1.31 -1.20 -1.36 -1.16
Kimono 0.34 -0.10 0.02 0.04

ParkScene -0.44 -0.47 -0.56 -1.35
Overall -0.68 -0.80 -0.84 -1.11

C BasketballDrill -4.54 -4.66 -5.01 -4.29
BQMall -2.13 -1.92 -2.11 -2.72

PartyScene -2.19 -2.31 -2.37 -2.87
RaceHorses -1.69 -1.49 -1.73 -2.17

Overall -2.64 -2.60 -2.80 -3.01
D BasketballPass -1.86 -1.51 -1.76 -2.34

BlowingBubbles -2.28 -2.22 -2.69 -2.80
BQSquare -3.05 -3.04 -3.06 -3.34

RaceHorses -2.72 -2.39 -2.50 -2.59
Overall -2.48 -2.29 -2.50 -2.77

E FourPeople -0.96 -0.97 -0.99 -1.36
Johnny -0.26 -0.49 -0.73 -0.91

KristenAndSara -1.46 -1.57 -1.75 -1.87
Overall -0.89 -1.01 -1.16 -1.38

F BaskeballDrillText -4.68 -5.13 -5.24 -4.71
ChinaSpeed -1.97 -2.02 -2.12 -2.00
SlideEditing -1.54 -1.78 -1.69 1.97
SlideShow -1.61 -1.73 -1.98 -1.44

Overall -2.45 -2.66 -2.76 -2.53
Overall -1.60 -1.63 -1.76 -1.91

TABLE V: BD-Rate gain in % on first frame for N=1 case

tree classifier is presented in Table IV. From Table IV it is ob-
served that CNN-based classifier outperforms the PCA based
classifier on both the validation and test data set. Moreover,
an accuracy of over 70% and 45% in case of N=1 and N=3
respectively on both test and validation data set shows that a
correlation between quantized transform coefficients and their
corresponding transform indexes exist across different contents
and is well captured by the CNN-model. Similar trends were
observed for other IP modes.

In the next experiments, we incorporated the CNN-model
inside the HEVC to assist the entropy coding process as
illustrated in Figure 1. Table V and VI show the BD-rate gains
for different HEVC CTC sequences for N=1 and N=3. In
order to show the performance enhancement with the proposed
scheme, the results are compared to a conventional fixed length
(FL) coding schemes under two variants. The first variant
encodes the bits b equi-probably (bypass mode) and the second
variant utilizes entropy coding with CABAC context (regular
mode) when coding the bits. The results of these two variants
are presented under EP and CTXT respectively.

Finally, the BD-rate gains obtained by employing the pro-
posed approach are presented in tables V and VI under
CNN. A consistent gain across all classes of sequences is
observed. The proposed method provides an overall gain of
around 0.1% and 0.2% in case of N=1 and N=3 respectively.
For sequences like Blowing bubble and Race horses, around
0.5% gain is observed over the conventional transform index
signaling approach. In order to illustrate the upper bound of
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Class Sequence EP CTXT CNN NoIndex
A Nebuta -0.37 -0.38 -0.40 -0.37

PeopleOnStreet -0.75 -0.69 -0.90 -1.75
SteamLocomotive 0.03 -0.03 -0.03 -0.19

Traffic -0.85 -0.83 -1.10 -1.82
Overall -0.49 -0.48 -0.61 -1.03

B BasketballDrive -0.22 -0.42 -0.48 -0.47
BQTerrace -1.44 -1.56 -1.70 -3.11

Cactus -1.02 -1.07 -1.25 -2.48
Kimono 0.18 -0.27 -0.05 -0.08

ParkScene -0.45 -0.59 -0.74 -2.81
Overall -0.59 -0.67 -0.84 -1.79

C BasketballDrill -3.14 -3.36 -3.34 -3.29
BQMall -1.74 -1.81 -1.91 -3.33

PartyScene -2.03 -2.14 -2.15 -3.89
RaceHorses -1.59 -1.57 -1.82 -3.38

Overall -2.12 -2.22 -2.31 -3.47
D BasketballPass -1.12 -1.32 -1.20 -2.02

BlowingBubbles -1.91 -1.76 -2.25 -2.98
BQSquare -2.37 -2.22 -2.50 -3.54

RaceHorses -2.29 -1.91 -2.50 -2.74
Overall -1.92 -1.80 -2.11 -2.82

E FourPeople -0.64 -1.00 -1.24 -1.79
Johnny -0.58 -0.46 -0.69 -0.83

KristenAndSara -0.87 -1.08 -1.09 -2.08
Overall -0.70 -0.85 -1.00 -1.57

F BaskeballDrillText -3.06 -3.56 -3.83 -3.57
ChinaSpeed -1.86 -1.83 -1.89 -2.15
SlideEditing -1.21 -1.26 -1.56 -1.93
SlideShow -1.42 -1.23 -1.44 -1.67

Overall -1.89 -1.97 -2.18 -2.33
Overall -1.28 -1.33 -1.51 -2.17

TABLE VI: BD-Rate gain in % on first frame for N=3 case

Sequences Index Prediction accuracy in % non-DCT/Total
outside RDO inside RDO in %

PeopleOnStreet 71 85 42
BQSquare 73 91 56
SlideShow 81 93 63

TABLE VII: CNN-model prediction accuracy in HEVC vs
actual transform usage statistics

the performance with perfect prediction of index, the BD-
rate gain without coding of index for above used IP modes
is computed and is presented under NoIndex in tables V and
VI. It is observed that with the help of the proposed CNN
model, this performance gap is partially covered.

Further, Table VII presents prediction accuracy of the CNN
in percentage when the CNN is used outside and inside RDO
respectively. Clearly, RDO favors the prediction decision made
using CNN model. This is expected as it is less expensive to
encode the bit when CNN predicts correctly.

The proposed method has a negligible impact on the de-
coder side complexity but a high impact on the encoder side
complexity as the CNN-model is used inside the RDO loop.
However, the complexity can be substantially reduced by effi-
cient hardware implementation of CNN as shown in literature
[19]. Finally, the complexity reduction is not addressed in this
paper and is considered for future work.

VI. CONCLUSION

In this paper, a novel CNN-based transform index prediction
method has been proposed. It is demonstrated that it is possible

to partially infer the transform index from the quantized coef-
ficient values by employing a CNN prediction model trained
offline on a large independent data set. The proposed method
shows a consistent improvement in the BD-rate gain over the
fixed length coding scheme in almost all cases. This method
provides an average gain of around 0.2% and a maximum
gain up to 0.59%. The future work will focus on improving
the CNN-based prediction model by using better loss functions
and other causal information from the bit-stream.
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