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Abstract—The increasing diffusion of user-friendly editing
software and online media sharing platforms has brought forth
a growing on-line availability of near-duplicate (ND) videos. The
need of authenticating these contents and tracing back their
history has led to the investigation of forensic algorithms for the
reconstruction of the video phylogeny tree (VPT), i.e., an acyclic
directed graph summarizing video genealogical relationships.
Unfortunately, state-of-the-art solutions for VPT reconstruction
suffer from strong computational requirements.

In this paper, we propose a processing age measure based
on video DCT coefficients and motion vectors statistics, which
enables to provide preliminary information about possible video
parent-child relationship. The use of processing age allows a
forensic analyst to blindly select a smaller amount of significant
video pairs to be compared for VPT reconstruction. This solution
grants computational complexity reduction to the overall VPT
reconstruction pipeline.

I. INTRODUCTION

The recent disposal of versatile acquisition, editing, and

sharing tools has led to the spreading of multiple versions of

the same multimedia objects, which are called near-duplicates

(NDs). This has brought several new issues and problems

concerning the discrimination of the originating file, the iden-

tification of the owner, or the reconstruction of the processing

history of each copy [1], [2], [3]. In these tasks, multimedia

forensics research has usually focused on the detection of

footprints left on images [4] or video sequences [5] by each

editing step. This analysis is significantly affected by the

modelling accuracy and the amount of noise affecting the data

under analysis (which could erase or alter these traces).

As a matter of fact, recent researches have been focusing the

analysis on the relations between different versions of the same

content [6], [7], [8]. The underlying idea is that multimedia

contents evolve like DNA sequences of organisms mutate

in biology. This process can be well-described by means

of a structure called phylogeny tree (PT), and phylogenetic
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analysis permits reconstructing it by analyzing similarities

between the nucleotides sequences of different organisms.

Similarly, multimedia phylogeny solutions aim at building a

complete relational graph, in which edge labels model the

similarity/dissimilarity between every pair of ND images or

videos [9], [6]. Then, the underlying PT is estimated by

means of graph optimization strategies that identify which

dependency relations among the different contents are the most

plausible.

Unfortunately, the accuracy of the PT reconstruction is

degraded by several factors such as the noise affecting the

similarity/dissimilarity measures, or the missing of some ob-

jects/nodes in the analysis pool. Moreover, in order to build the

relational graph, current solutions prove to be computationally

expensive due to the need of comparing every pair of ND

objects in the analysis set. This is a problem especially

when video sequences are taken into account, rather than still

images.

The current paper aims at reducing the computational bur-

den of the typical state-of-the-art video phylogeny tree (VPT)

reconstruction pipeline. To this purpose, we present a set of

processing age metrics for video sequences that are based on

statistics of DCT coefficients and motion vector differences.

By including the proposed metrics in the video phylogeny tree

reconstruction process, it is possible to check the feasibility

of graph edges before running the optimization routine on

them. Experimental results performed on 2.800 ND video

sequences, show that the proposed solution permits improving

the accuracy of the identification of the root sequence (i.e., the

original one used to generate all the other ND in a set), and

it reduces the computational complexity of the overall VPT

reconstruction scheme.

In the following, Section II presents the problem of VPT

reconstruction and overviews some of the works published on

the subject. Section III describes how the proposed processing

age metric is computed, and reports how to include it in the

VPT reconstruction strategy. Finally, Section IV verifies the

performance of our algorithm by means of thorough empirical

testing, whereas Section V draws the final conclusions.

II. PROBLEM STATEMENT AND RELATED WORKS

Two video sequences Si and Sj are considered NDs if they

can be generated applying some content preserving editing
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operations (e.g., blurring, coding, brightness adjustment, etc.)

to the same originating video sequence S0. Solving the prob-

lem of VPT reconstruction means finding the genealogical

relationships between ND videos in a pool in order to infer

which sequence generated another one. In order to solve

this problem, state-of-the-art solutions are inspired by works

originally proposed for still images [9], [10], and basically

follow a common pipeline [6], [11].

First, video phylogenetic strategies start building a com-

plete relational graph where each node corresponds to a

different video sequence, and edge labels denote dissimilarity

(or alternatively similarity) relations between nodes [6], [11].

Specifically, given a pair of ND video sequences Si and Sj ,

dissimilarity is defined as

D(Si, Sj) = argmin
T

L (Si, T (Sj)) , (1)

where L computes the mean squared error, and T is the

combination of editing operations (such as cropping, resizing,

logo addition, rotation, color enhancement, etc.) that best

maps Sj into Si. The rationale behind dissimilarity is that,

if a transformation T mapping Sj into Si exists (i.e., low

dissimilarity value), then Sj may have been used to generate

Si. Conversely, if this transformation does not exists (i.e., high

dissimilarity value), the two sequences are surely not in parent-

child relationship. The most time consuming operation in VPT

reconstruction is the estimation of T .

Then, the underlying VPT is estimated by means of op-

timization strategies that identify the maximum/minimum

spanning tree, like Oriented Kruskal (OK) [12] or Optimum

Branching (OB) [13].

Unfortunately, the accuracy of the reconstruction can be

significantly impaired by several factors. Often the adopted

similarity/dissimilarity metric is highly noisy, leading to sev-

eral reconstruction errors. This fact is more evident whenever

video sequences have been significantly edited at every ND

generation, and therefore, several equalization and synchro-

nization steps need to be applied in order to have a mean-

ingful measurement [11]. One of the most frequent errors is

parent-child inversion, which takes place whenever the editing

operations that generate the child do not significantly change

the visual information of the father (e.g., in the case of minor

cropping). Moreover, many reconstruction errors arise when-

ever some nodes of the VPT trees are missing, which causes

the estimation algorithm to approximate ancestry relations

via the similarity of non-directly related nodes. Additionally,

computational complexity is another crucial issue since the

dissimilarity needs to be computed for every pair of videos;

thus, the overall amount of calculation scales quadratically

with the number of videos in the analysis pool.

Problems related to noisy dissimilarity values can be ef-

fectively mitigated by including additional redundancy in the

reconstruction process [14]. Conversely, problems related to

high computational burden can be mitigated by techniques

enabling to pre-emptively select subsets of video pairs to

analyze. To this purpose, the approach in [15] introduces a no-

reference quality metric that models the processing age (PA)

of images, i.e., the amount of editing that has been applied

on every ND image in the dataset. By comparing the PA of

the images, it is possible to exclude a-priori some parent-

child relations that appear to be unfeasible (i.e., a parent with

a PA lower than his child). This operation permits reducing

the computational complexity of the overall PT reconstruction,

and improves accuracy.

In this paper, leveraging findings of [15], we propose a

processing age measure for video sequences, which enables to

reconstruct the VPT with decreased computation complexity.

III. VIDEO PHYLOGENY TREE RECONSTRUCTION USING

PROCESSING AGE MEASURE

Because of the massive amount of data that need to be

stored, video sequences are usually available in compressed

format. As a matter of fact, every editing performed on

a video sequence needs to be followed by a compression

operation. Estimating the number of coding steps permits

placing the analyzed video sequence at the correct depth of

the reconstructed VPT (i.e., a video compressed many times

cannot be parent of a video compressed less times). This

permits detecting wrong dependencies and removing unfea-

sible links (thus reducing the computational complexity since

their similarities/dissimilarities do not need to be computed

anymore).

Video processing age. The forensic community has faced the

problem of double or multiple video compression detection

before [16], [17], [18]. Anyway, most of the approaches rely

on training a machine-learning classifier on a set of video

sequences which were edited and coded according to a finite

set of possible parameters. Since in a real scenario the range

of possible editing and coding choices is quite wide, we

investigate a more general no-reference metric that permits

comparing and ordering different ND sequences according to

their creation time rather then identifying the exact number of

compressions operated on each of them.

We call this metric processing age (PA), and compute it

analyzing the statistics of the DCT coefficients of prediction

residuals of video frames, as well as motion vector statistics,

leveraging the findings in [15].

Aging metric based on DCT coefficient statistics

Given a video sequence Si, the n-th frame Si(n) is pre-

dicted from the frame Si(n − 1) using a motion estimation

routine. The generated prediction Pi(n) is then subtracted to

it generating the prediction residual Ri(n) = Si(n) − Pi(n).
Then, Ri(n) is partitioned into 4× 4 blocks x, and each one

of them is transformed using the 4× 4 DCT-like transform of

H.264/AVC and quantized into the integer output coefficients

Xq . In the analysis, we adopted 4 × 4 blocks since it is the

smallest transform size adopted by the existing video coding

standards (and therefore, it grants the finer granularity on

frame analysis).

For every spatial frequency (u, v), it is possible to com-

pute a histogram of the absolute coefficient values c =
|Xq(u, v)|. This empirical statistics, which will be referenced
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(d) Nc = 4 QP=24.

Fig. 1. Probabilities P0,2(c) (blue values) and the fitted model P̃0,2(c)
(dashed line) for frame 1 of sequence soccer compressed Nc times. The
adopted video coded is H.264/AVC with quantization parameter QP.

with the symbol Pu,v(c), can be well-approximated by an

exponentially-decreasing model. As a matter of fact, several

DCT coefficients fitting models have been proposed in lit-

erature, such as Laplacian [19], generalized Gaussian [20],

laplacian+impulsive [21], and Cauchy [22]. In this work, we

simplified all these models with the function

P̃u,v(c) =Γe−π(c), (2)

where π(·) is a polynomial of third degree and Γ is a

normalizing constant. In this way, it is possible to include

both a Laplacian and a Gaussian model for the absolute value

of quantized coefficients avoiding the fitting problems related

to the generalized Gaussian.

The statistics P̃u,v(c) is obtained by fitting c > 0 values

to the given model. Null coefficients are omitted since many

video coders adopt dead-zone quantizers and non-linear co-

efficient cancellation strategies driven by rate-distortion opti-

mization routine. This alters coefficient statistics making the

fitting more complex.

Fig. 1 reports the statistics of quantized DCT coefficients

(on semi-logarithmic axes) for the sequence soccer coded

Nc times with varying quality parameters. It is possible to

notice that as Nc increases, the empirical Pu,v(c) deviates

from the fitted P̃u,v(c) model. Therefore, it is possible to

associate the processing age metric with a divergence metric.

To this purpose, we considered the Jensen-Shannon divergence

au,v =
1

2

∑

c

Pu,v(c) log2
Pu,v(c)

P̃u,v(c)
+
1

2

∑

c

P̃u,v(c) log2
P̃u,v(c)

Pu,v(c)
(3)

The graphs in Fig. 1 reports the PA values au,v for different

Nc. It is possible to notice that the values au,v increase as the

number of compression increases.

Experimental results showed that this property is verified for

low-frequencies coefficients; as a matter of fact, processing age

computation was limited to a subset U of NU spatial frequen-

cies corresponding to the first 9 AC coefficients (following a

zig-zag scan).

Aging metric based on motion vector statistics

A similar analysis can be performed on the statistics of

motion vectors (MVs). At first, each frame is partitioned into

4 × 4 blocks and a displacement vector v = [vx, vy] is

assigned to each block from motion vector values coded in the

coded stream. Whenever motion vectors are referred to larger

blocks, displacement vectors are obtained by replicating the

corresponding MV. Then, for every MV of the frame, motion

vector difference dMV is computed as follows:

dMV = [|dx|, |dy|] =

[
∣

∣

∣

∣

vt −
vAt + vBt

2

∣

∣

∣

∣

]

t=x,y

(4)

where v
A, vB are the displacement vectors related to the left

and upper 4× 4 blocks.

The statistics of |dx|, |dy| can be well-characterized by

a second-order description defined by the averages mx =
E[|dx|], my = E[|dy|] and the corresponding variances

σx = E[|dx| −mx], σy = E[|dy| −my]. As a matter of fact,

it is possible to define two motion vector based aging metrics

as

aavg =
mx +my

2
, avar =

σx + σy

2
. (5)

PA-based video phylogeny tree estimation. Given the

previously-described metrics, it is possible to generate for the

i-th video sequence an age vector

ai = [ai,k] =
[

[au,v](u,v)∈U
, aavg, avar

]

(6)

that groups the different metrics.

For every pair of nodes/videos Si, Sj in the dissimilarity

graph, it is possible to check the hypotheses

H1 = {Si is younger than video Sj} and H2 = ¬H1 for

every component ai,k. More precisely, if ai,k − aj,k < γ,

the hypothesis H1 is verified by the k-th aging metric; if

ai,k−aj,k > γ, H2 is considered valid; otherwise the situation

is doubtful and nothing is done. The threshold γ can be chosen

upon training depending on how much we trust PA for the

considered video tree. Composing the outcomes for all the

ages via a majority voting strategy, it is possible to determine

which hypothesis between H1 and H2 is more likely. In case

H1 obtains the majority of votes, the link Sj → Si is removed

from the graph; in case H2 wins, link Si → Sj is erased;

otherwise, nothing is removed.

Then, the underlying minimum spanning tree (MST) can

be estimated from the resulting dissimilarity graph using a

standard optimum branching strategy (like in [13]).

Note that, in case a link is removed, dissimilarity computa-

tion for that link is skipped reducing the overall computational

complexity. Moreover, whenever the noise level affecting the

dissimilarity is high, final accuracy can improve as well. These

advantages will be highlighted in the following section.

IV. EXPERIMENTAL RESULTS

In this section we describe the performed experimental

campaign and the achieved results in order to validate the

proposed algorithm.
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