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Abstract—Automatic Music Transcription (AMT) is concerned
with the problem of producing the pitch content of a piece
of music given a recorded signal. Many methods rely on
sparse or low rank models, where the observed magnitude
spectra are represented as a linear combination of dictionary
atoms corresponding to individual pitches. Some of the most
successful approaches use Non-negative Matrix Decomposition
(NMD) or Factorization (NMF), which can be used to learn
a dictionary and pitch activation matrix from a given signal.
Here we introduce a further refinement of NMD in which
we assume the transcription ifself is approximately low rank.
The intuition behind this approach is that the total number
of distinct activation patterns should be relatively small since
the pitch content between adjacent frames should be similar.
A rank penalty is introduced into the NMD objective function
and solved using an iterative algorithm based on Singular Value
thresholding. We find that the low rank assumption leads to a
significant increase in performance compared to NMD using -
divergence on a standard AMT dataset.

I. INTRODUCTION

Sparse and low rank models [1][2] have seen a lot of
interest in signal processing. A challenging problem for such
methods is that of Automatic Music Transcription (AMT),
which is the task of isolating and enumerating the pitches
present in a recorded music signal. The nature of music
presents several difficulties which are in general not well
addressed by standard matrix factorization approaches. For
example, exemplar dictionaries built using isolated pitches
have been shown to be highly correlated which can make
them difficult to separate [3]. Another issue is that nearly all
common techniques which rely on factorizing a given signal
implicitly treat each frame as independent. This assumption is
clearly violated by musical signals in which the pitch content
is (locally) smooth.

In this work, we show how AMT performance can be
improved by placing an additional low rank assumption on
the activation matrix, as part of an Non-negative Matrix
Factorization (NMF) or Non-negative Matrix Decomposition
(NMD) model. We argue that this constraint is sensible, since
although any activation matrix may have many thousands of
columns, the ground truth activation tends to have low rank
structure. Classical matrix factorizations consider each audio
frame independently, potentially leading to rapidly changing
supports which is not present in the groundtruth.
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Here we focus on the problem of estimating the active
pitches given a fixed pitch dictionary, noting that having
established the merits of the proposed approach it can be
easily extended to the case where the dictionary is learned
at the same time. The structure of this paper is a follows:
in Section II we describe the use of NMD for AMT and
its potential shortcomings. In Section III we introduce the
proposed low-rank approach based on the standard NMD
non-negative matrix updates and singular value thresholding.
Section IV outlines an experiment using a popular AMT
dataset, where we show that the rank constrained approach
is competitive with related published work.

II. AUTOMATIC MUSIC TRANSCRIPTION USING
NON-NEGATIVE MATRIX DECOMPOSITION

Given a matrix S whose columns correspond to magnitude
spectra of short-time audio frames and a dictionary D of
isolated pitches, Non-negative Matrix Decomposition (NMD)
seeks a factorization of the form

S~ DC (D

which minimizes some distortion or distance measure d(S, D
C) between the observed signals S and the reconstruction in
the dictionary given by DC with non-negativity constraints
on all the matrix elements. For the purposes of this work,
we distinguish NMD — which seeks a factorization over a
given dictionary — from the standard Non-negative Matrix
Factorization (NMF) — which seeks both the activations and
a (non-negative) dictionary D. While the approach outlined
in this paper can be easily applied to NMF, we chose to deal
solely with the NMD case in order to isolate the effect of the
proposed modified C updates. In both cases, the non-negativity
constraints are natural for AMT since we are modelling the
observed magnitude spectrum as a linear combination of
individual pitches.

As a similarity measure, we consider the family of 3-
divergences which have been shown to perform well in
AMT. For matrices {X,Y} € R™*", define dg(X,Y) =
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and C is the set Ry \ {0,1}. In fact, the generalized j-
divergence includes several well-known similarity measures as
special-cases, such as Euclidean distance (5 = 2), Kullback-
Leibler divergence (8 = 1) and the Itakura-Saito divergence
(8 = 0). For signals S ¢ Rix" and a fixed dictionary
De le_Xk, the S-NMD problem seeks the solution to

min ds(S,DC) such that C e RE*".

A suitable C satisfying the constraint can be found using the
multiplicative update rule [1] [4]

D' (S® (DC)ﬂ‘2)>
DT(DCP )

CeC®< )
where ® is the Hadamard product and the division/exponen-
tiation are applied entry-wise. This update rule is basically a
gradient descent scheme with a judiciously chosen step size —
by writing the update step in terms of a multiplication instead
of addition (as in standard gradient descent), all the terms will
remain non-negative throughout. It has been shown that this
rule results in a consistent decrease in the objective function
for a range of (3 values.

A weakness of current NMD/NMF methods is that indi-
vidual frames are treated independently. In the case of AMT
this is a poor assumption since in general adjacent frames will
share similar pitch content. To combat this, some works have
attempted to apply smoothness constraints on the activations
post-hoc using additional processing steps such as Hidden
Markov Models, in which the obtained activations are treated
as observables of the true hidden (pitch) state [5]. Still others
have explored probabilistic generalizations of NMF which
include assumptions about the smoothness of the activations
(i.e. the rows of C should be smooth) [6] or have investigated
the use of Recurrent Neural Networks which take into account
the previous states during the inference [7][8].

ITI. Low RANK NON-NEGATIVE MATRIX
DECOMPOSITION

The S-NMD method can be used to produce a fixed-rank
estimate of the initial signal matrix S based on the dictionary
D and coefficients C (i.e. the rank is of the reconstructed
matrix is equal to the number of columns of D). For AMT
however, we note that the resulting coefficient matrix C has
additional structure not exploited by traditional NMF/NMD
algorithms; namely time smoothness. In this context we expect
that (i) once activated, pitches remain activated for a significant
amount of time and (ii) adjacent frames should be similar.
The goal of this work is to use this intuition as part of the
algorithm in order to produce ‘smoother’ estimates C. As a
motivating example, Fig. 1 displays the activation matrix for a
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Fig. 1. Transcription matrix C using S-NMD (top), only the ground-truth

pitches (middle) and spurious activations (bottom).

short excerpt of a piece of classical piano music using 5-NMD
(top), the activation with spurious elements removed (middle)
and just the isolated spurious elements (bottom). While much
of the true pitch content is successfully captured, we observe
many spurious activations where harmonically related atoms
have entered the model. Our goal is to remove the noisy
activations while keeping the true activations by assuming
that the activation matrix C is also low-rank. Using this
assumption, we can model the observed activations as con-
sisting of a low-rank part (corresponding to the true activation
patterns) together with a “noisy” component (corresponding to
short-time spurious activations) and therefore we can improve
performance by removing the short-time components in C. We
will refer to this approach as Low Rank Non-negative Matrix
Decomposition (LR-NMD).
Practically, given a signal matrix S and a dictionary D, the
problem aims to solve
min

dg(S,DC
Ceri*™ ﬂ( )

such that rank(C) <k  (4)

where dg(S,DC) is the measure-of-fit between the signals
and their reconstructions given by the S-divergence outlined
above.

To make the optimization easier, following [9] we can relax
the rank constraint on C using the nuclear-norm defined by

cl, = trace(\/CTC) =Y ai(C) (5)
=1

1899



2017 25th European Signal Processing Conference (EUSIPCO)

where m = min{k, n} and {o;(C)}!" are the singular values
of C. This gives the final proposed LR-NMD optimization
problem

min

Sin - ds(S,DC) +A[C, ©6)
S5:4

where A is a regularization constant which must be chosen.
In effect, this corresponds to an ¢;-norm penalty on the
singular values of C which encourages sparsity (i.e. most of
the singular values will be 0) and hence C will be low-rank.
We solve this optimization using an iterative scheme; at each
step we update C using the S-NMD rule given in equation
(3) followed by a Singular Value Thresholding operation [10].
Using its Singular Value Decomposition, C can then be written

as
Cc=uxv?T (7

where U and V are orthogonal and ¥ is a diagonal matrix
containing the singular values. Writing o = diag(X) we
apply an element-wise shrinkage and thresholding operation
0; + max(o;—\,0) to o and let C = U diag(c’) V7. This is
essentially a projected (or proximal) gradient descent scheme
[11] similar to Iterative Shrinkage and Thresholding (ISTA)
[12] and other proximal gradient techniques seen in signal
processing and compressed sensing, but applied in the context
of non-negative matrix factorization (in fact, the singular value
thresholding operator is the proximity operator for the nuclear-
norm [10]). One problem is that after thresholding, small
negative values can appear in C and therefore after each
iteration we simply set these values to 0.

We also found a small performance increase by using a
slightly modified update rule for C: while the nuclear norm
is non-diffentiable, it has a well-defined subgradient [13] with
UV7T € 9||C|, [14]. Incorporating this into the NMD update
gives

C«Co <DT (56 (D)) - AM_) ®)

DY(DC’ ) + AxM T

where M and M~ are respectively the matrices formed using
just the positive and negative entries of UV This update rule
minimizes (6) using sub-gradient descent, but resulted in only
a minor improvement without the singular value thresholding
strategy. The full LR-NMD algorithm is outlined in Fig. 2.

IV. EXPERIMENT

The algorithm was evaluated using the MIDI Aligned Piano
Sounds (MAPS) dataset [15], which consists of recording of
western classical piano music together with ground-truth MIDI
transcriptions. This set contains several subsets corresponding
to different piano types and recording environments and for
testing purposes we chose the “EnStDkcl” subset. For each
recording we took the first 30-seconds and processed it using
an Equivalent Rectangular Bandwidth (ERB) transform on 25-
windows and a frequency resolution of 250 bins. The ERB is
perceptually motivated and has been shown to perform well for
the AMT problem [3]. MAPS also contains isolated recordings
of individual piano keys which we use to build the pitch
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Input: Signals S, dictionary D, regularizer A,
[B-parameter.
Output: Activation matrix C.
Initialization: Initialize C using small non-negative
values.
while not converged do
Update C using (8).
Compute the SVD: UXV7T = C.
Update X by singular value thresholding:
3« threshy ().
Update C + UXDVT,
Set any negative elements in C to 0.
end while

return C.

L

Fig. 2. Proposed algorithm.
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Fig. 3. Transcription results using 3-NMD (top) and propsed LR-NMD
(bottom) with a fixed pitch dictionary.

dictionary by learning one atom per-pitch. This results in a
dictionary of size 250 x 88, with each column corresponding
to a single pitch.

The transcription quality was evaluated using frame-wise
F-measure which is a common metric for AMT (see for
example [5] [16] [17]). For each recording, we decomposed
it over the learned dictionary using both 5-NMD and LR-
NMD with 8 = 0.5 (this value has been found to work best
for AMT). The target transcription consists of a binary time-
pitch matrix, with a 1 indicating the presence of a pitch and
a 0 indicating absence. To binarize the output transcription
matrix C, we threshold it by setting to zero any element with
value less than m + co (and 1 otherwise), where m and o
are the mean and standard deviation of the activations for that
column and c is a constant. Other thresholding strategies have
been used in the literature, for example based on the maximum
activation in C, but we didn’t find a meaningful difference in
the performance in terms of F-measure of either approach.
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We count the number of true-positive (tp), false-positive (fp)
and false-negative (fn), from which we calculate the precision
(P), recall (R) and F-measure:

[§ [§ 2PR
P g By PR
tp+1p tp+1fn P+R
A. Results and Discussion

The results for each method are summarized in Fig. 4, where
we see find that the low-rank penalty considerably improves
performance. In Fig. 2 we compare the resulting outputs of
standard 3-NMD against LR-NMD. As expected, we find that
the low-rank approach shows less short-time components. In
particular, the short time components have been considerably
‘smoothed’ in the low-rank case. We also note that the iterative
scheme is important, giving much better results than simply
applying the thresholding as a post-processing step.

To test the effect of the hyperparameters ¢ and A we created
a smaller dataset of 5 tracks and varied the values of A\ and
c. The results are presented in Figures 5 and 6. While some
care must be taken to set these values for best performance,
in general LR-NMD consistently outperforms 5-NMD across
a range of reasonable values.

Overall we find that the low rank assumption results in a
robust improvement. An absolute F-measure improvement of
2.25 over S-NMD is non-trivial for AMT and is similar to the
gains using other techniques, for example the 1.8 improvement
reported in [3] using a per-frame dictionary conditioning step
with an ERB transform of the same dimension and the same
dataset. In Fig. 4 we also include results (as reported in
[18]) on “EnStDkcl” obtained using a Probabalistic Latent
Component Analysis (PLCA) method by Benetos et al [19]
and the Harmonic Non-negative Matrix Decomposition (H-
NMD) of Vincent et al [20]. The approach of Cheng et al
[18] represents the state-of-the-art for this task using NMD at
79.01 reported F-measure; while also relying on S-divergence,
they consider a more complicated model with onsets and
decays treated separately, together with dynamic-programming
to infer the activations.

Method P R F
H-NMD [20] - - 58.84
PLCA [19] - - 67.79
WB-NMF [3] - - 73.70
B-NMD [21] 73.31 69.31 || 71.25
LR-NMD (proposed) || 73.83 73.17 || 73.50

Fig. 4. Framewise F-measure AMT results for the MAPS “EnStDkcl” subset.
Italics indicate results taken directly from the relevant publication. Dashes
indicate that the given metric was not reported.

V. CONCLUSION

We proposed a low-rank model for Automatic Music Tran-
scription, based on the idea that a good transcription should
be free from short-time spurious elements. To achieve this we
introduced an augmented update rule for S-NMD, which iter-
ates between non-negative multiplicative updates and singular
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value thresholding. The proposed approach gives improved
performance for the AMT task and is simple to implement,
which makes it easy to add to existing NMF-based systems.

For future work, similar ideas could be applied to more
complicated NMF AMT algorithms involving group sparsity
[22] or non-negative dictionary learning. So far, we have used
a setting of 0.5 for § which has previously found to work well
for AMT, however it is possible that the performance could
be further improved by fine-tuning the (3 parameter for the
low-rank approach. Another avenue is incorporating low-rank
updates into an NMF model, for example using the W3-NMF
dictionary updates.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7-PEOPLE-2013-ITN) under Grant Agreement n® 607290
SpaRTaN.

1901



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

ISBN 978-0-9928626-7-1 © EURASIP 2017

2017 25th European Signal Processing Conference (EUSIPCO)

REFERENCES

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-791,
1999.

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete
basis set: A strategy employed by V1?” Vision Research, vol. 37, no. 23,
pp. 3311-3325, 1997.

K. O’Hanlon and M. D. Plumbley, “Automatic music transcription using
row weighted decompositions,” in Proceedings of the IEEE International
Conference on Acoustics, speech and signal processing (ICASSP), 2013.
IEEE, 2013, pp. 16-20.

C. Févotte and J. Idier, “Algorithms for nonnegative matrix factoriza-
tion with the S-divergence,” Neural Computation, vol. 23, no. 9, pp.
2421-2456, 2011.

T. B. Yakar, P. Sprechmann, R. Litman, A. M. Bronstein, and G. Sapiro,
“Bilevel sparse models for polyphonic music transcription.” in /4th
International Society for Music Information Retrieval Conference, 2013,
pp. 65-70.

N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and
smoothness in Bayesian non-negative matrix factorization applied to
polyphonic music transcription,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 3, pp. 538-549, 2010.

S. Bock and M. Schedl, “Polyphonic piano note transcription with
recurrent neural networks,” in Proceedings of the IEEE International
Conference on Acoustics, speech and signal processing (ICASSP), 2012.
IEEE, 2012, pp. 121-124.

S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network
for polyphonic piano music transcription,” IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP), vol. 24, no. 5, pp.
927-939, 2016.

E. Candes and B. Recht, “Exact matrix completion via convex opti-
mization,” Communications of the ACM, vol. 55, no. 6, pp. 111-119,
2012.

J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on Optimization, vol. 20,
no. 4, pp. 1956-1982, 2010.

P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-point Algorithms for Inverse Problems in Science
and Engineering. Springer, 2011, pp. 185-212.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183-202, 2009.

S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Lecture
Notes of EE3920, Stanford University, Autumn Quarter, vol. 2004, 2003.
G. A. Watson, “Characterization of the subdifferential of some matrix
norms,” Linear Algebra and its Applications, vol. 170, pp. 33-45, 1992.
V. Emiya, R. Badeau, and B. David, “Multipitch estimation of piano
sounds using a new probabilistic spectral smoothness principle,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1643-1654, 2010.

E. Benetos and S. Dixon, “Multiple-instrument polyphonic music tran-
scription using a temporally constrained shift-invariant model,” The
Journal of the Acoustical Society of America, vol. 133, no. 3, pp.
1727-1741, 2013.

——, “A shift-invariant latent variable model for automatic music
transcription,” Computer Music Journal, vol. 36, no. 4, pp. 81-94, 2012.
T. Cheng, M. Mauch, E. Benetos, S. Dixon et al., “An attack/decay
model for piano transcription,” in 7th International Conference on
Music Information Retrieval (ISMIR), 2016.

E. Benetos, T. Weyde et al., “An efficient temporally-constrained proba-
bilistic model for multiple-instrument music transcription,” pp. 701-707,
2015.

E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic spectral
decomposition for multiple pitch estimation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 528-537,
2010.

A. Dessein, A. Cont, and G. Lemaitre, “Real-time polyphonic mu-
sic transcription with non-negative matrix factorization and beta-
divergence,” in ISMIR-11th International Society for Music Information
Retrieval Conference, 2010, pp. 489-494.

K. O’Hanlon and M. D. Plumbley, “Polyphonic piano transcription using
non-negative matrix factorisation with group sparsity,” in Proceedings

1902

of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014. 1EEE, 2014, pp. 3112-3116.



