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ABSTRACT

Cognitive and MIMO radars need to adapt the transmitted wave-
forms based on the radar task as well as the propagation and the tar-
get environments. Many waveform optimization methods proposed
in the literature for optimizing the sidelobe and cross-correlation lev-
els are based on stochastic search algorithms or slow numerical ap-
proximation methods. However, for real-time applications, it is nec-
essary to perform the optimization fast since the radar channels and
target parameters may vary rapidly. For this purpose, we propose
a hybrid optimization approaches based on gradient and randomiza-
tion for fast optimization of the transmit waveform codes.

Index Terms— Cognitive radar, MIMO radar, waveform de-
sign, optimization, constant-modulus waveforms

1. INTRODUCTION

Cognitive radars are intelligent radar systems that are aware of their
surroundings and use the received information for learning and adap-
tation of its operation [1]. MIMO radars, on the other hand, are
defined as a radar systems that transmit simultaneously from mul-
tiple transmitters and receive the scattered signal using multiple re-
ceivers [2,3]. Furthermore, MIMO radars use feedback from the
receivers to the transmitters for cooperative transmission, including
optimization for a particular target scenario and radar task [4].
Typical goal for waveform optimization is to achieve low peak
sidelobe and cross-correlation levels, and the optimization of the

symbols for the transmitted radar waveforms has been studied exetnsively

in the past. For example, simulated annealing and iterative code
selection were combined to search for orthogonal polyphase codes
in [5]. Similar approach using genetic algorithm was used in [6].
Tabu search algorithm was used in [7] and the cross-entropy method
in [8]. An effective optimization method was introduced in [9].
While there are simple solutions for waveforms with optimal SINR,
for example (see [10] or [11]), no such solutions have been presented
for the general case of optimizing sidelobe and cross-correlation lev-
els.

The optimization techniques employed in these methods have
high complexity and may not be applicable in scenarios with rapidly
varying propagation conditions and target parameters. In such situ-
ations, the sidelobe and cross-correlation levels need to be adjusted
according to the returned signal power in order to keep the probabil-
ity of errors constant. Therefore, it is necessary to be able to do the
code design for cognitive and MIMO radars in real-time.

Many of the existing optimizations in the literature, such as those
cited above, require large number of iterations to provide good re-
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sults. Newton-type algorithms can be used for faster convergence,
but the problem with this approach is that when optimizing the peak
sidelobe and cross-correlation levels, the objective is highly noncon-
vex. Thus, conventional gradient-based methods typically get stuck
in the first encountered local minimum with suboptimal, typically
even poor results.

In this paper, we propose a hybrid method that uses random-
ization to alleviate the problems of the gradient-based algorithms.
Whenever the gradient-based method cannot decrease the cost, a
search direction is chosen randomly forming a hybrid of gradient-
based and stochastic search methods. This approach can be applied
to the gradient descent, the conjugate gradient, and the Broyden—
Fletched—Goldfarb—Shanno (BFGS) method, for example. Points at
which the objective function is not differentiable either a subgradi-
ent or a random direction can be used. It should be noted that this
approach is entirely different from the stochastic gradient descend.

In this paper, we develop a waveform code design method that
combines a randomized approach with the conjugate gradient on the
oblique manifold. Furthermore, by choosing the right parametriza-
tion, the manifold constraints of the code design problem can be con-
verted into simple linear constraints enabling the use of the BFGS
method. These methods are compared with simulated annealing. It
is demonstrated that these hybrid methods achieve far better results
than the conventional gradient based approaches. The hybrid con-
jugate gradient approach results in similar peak sidelobe and cross-
correlation levels as the simulated annealing, but with an order of
magnitude smaller computational complexity.

The paper is orgnaized as follows. The problem Formulation is
given in Section 2. In Section 3, we describe the proposed optimiza-
tion approaches. Numerical examples of the optimization results are
given in Section 4, before the final conclusions in Section 5.

2. PROBLEM FORMULATION

The goal is to design the code sequences so that the coded waveforms
would have low peak sidelobe and peak cross-correlation levels. The
cross-ambiguity function is defined for narrowband waveforms s; (¢)
and s;(t) as [12]
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where 7 is the time delay, F'p is the Doppler frequency of the target,
and j is the imaginary unit. If the narrowband assumption is not
valid, the cross-ambiguity function has to be written as [13]
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The temporal compression factor -y, which describes how much the
waveform compresses or stretched in time because of the Doppler
shift, is given by

Fp
= 1 -, 3
=l 3)
where F is the carrier frequency.
As most radars use digital signal processing, we are interested in

the properties of sampled discrete-time signals. Therefore, we define
the sample cross-ambiguity function as

Xij (1, Fp,Ts) =
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k
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where T is the sampling interval. Using the definition of Riemann
integral, we see that as T; — 0, the sample cross-ambiguity function
converges to the continuous-time one if (2) is integrable.

The peak cross-correlation (PCC) can be used as a measure of
the maximum of the sample cross-ambiguity function. The normal-
ized PCC is defined for the ith waveform as

Xij (7—7 F7 TS)
PCC;(Ts) = sup &2—~—-~1-—""1""2.
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The normalized peak sidelobe (PSL) of the sample auto-ambiguity
function is defined as

&)
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where the set P; is defined as the set of delay 7 and Doppler fre-
quency F' values that encompass the main peak of the ith waveform.
Typically, F' and 7 are continuous but can be discretized in suitable
way as discussed below.

Let the vector s; contain the samples of the ith baseband wave-
form s;(t), i.e. (si)n = sx(nTs), where T is the sampling interval.
The dimensions of s; depend on the number of symbols and sam-
pling rate, and at critical sampling rate, the s; would be a N, X 1 vec-
tor, where N}, is the number of pulses, which is equal to the number
of symbols. We define the delay and Doppler matrix D(7, Fp, T%s)
as

(D(7,Fp,Tv)), . = VAT P 5y s (T)
where +y is given by (3), d;; is the Kronecker delta, and
nls +7
hin)=|——| . 8
= |2 ®

Thus, D has nonzero elements only on one of the diagonals (not
necessarily the main one) depending on the delay 7.

Using the delay and Doppler matrix, the sample cross-ambiguity
function can then be written as

2
Xij (1, Fp, Ts) = |[si'D(7, Fp, Ts)s; | - ©)

In order to simplify the waveform optimization problem, it is
assumed next that the narrowband assumption holds, and that the
waveform is sampled so that the symbol duration is an integer mul-
tiple of sampling interval 7’s. With these assumptions, only the sam-
ple index k and the normalized Doppler frequency f are needed for
forming the delay and Doppler matrix. If the waveform is critically
sampled (the sampling rate is equal to the symbol rate), the delay
and Doppler matrix in (7) becomes a N, x N, matrix with elements

(Dk,f)n,m = (D(kTSaFD7TS))n7m (10)
_ TsejQ‘frnFDTs 5n+k,m — TsejZan(;n-q—k,m, (11)
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where normalized Doppler frequency is f = FpTs.
We can also assume without loss of generality that each wave-
form is normalized such that

[[sk]|* = 1. (12)

The PSL and the PCC of the ¢th waveform can now be expressed as

2
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and
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Assuming that the half-width of the main peak is one symbol in the
delay and fo in the normalized Doppler frequency, the condition
(k, f) ¢ P; can be written as |f| > dxofo, where d;; is the Kro-
necker delta.

The goal of minimizing the maximum PSL and PCC of the wave-
form set can now be formulated as an optimization problem

2
min max s,HDk,fsj [f] > dij0k0f0 (15a)
si,8j 1,9,k f

st ||si|> =1, Vi. (15b)

The function |s7 Dy, £s;|? is a continuous, multivariate polynomial
and k is integer whereas f € [—1/2,1/2] due to the unit-period of
the ambiguity function and aliasing. Consequently, the maximum
exists. By discretizing the normalized Doppler frequency, one ob-
tains a minimax optimization problem of multivariate quartic poly-
nomials on an oblique manifold.

3. OPTIMIZATION METHODS

In order to use gradient-based approaches for the code design of the
transmit waveform, one needs the gradient of the objective function
(15a). We concatenate the symbol vectors into a single vector as

T
s=(s{ s5 sir) s (16)
where M is the number of waveforms.
Let u; be an unit vector such that
1 k=1
u; = ’ . 17
(ue)s {O, otherwise {17

The waveform selection matrix C; such that C;s = s; can then be
defined as

Ci=uj ®Iu, (18)
where ® denotes the Kronecker product and I/ is an M x M iden-
tity matrix. With A; ; .y = C7 Dy, ;C;, the objective function can
be written as

- 2
max | A, 3| (19)
.9,k f :

Defining q; jx,f = s A; k. ss, the calculation rules of the

complex gradient [14] can be used to obtain
* H
Velgigk s 1? = 2(a e s Aijok f + Gik s Al g)s. (20)

However, the objective function (15a) is not differentiable at points
where the values of 4, j, k, f are not unique for the maximum. In
such points, a subgradient can be obtained by setting the elements of



ISBN 978-0-9928626-7-1 © EURASIP 2017

2017 25th European Signal Processing Conference (EUSIPCO)

the gradient vector to zero whenever the real or the imaginary parts
of the gradient vectors corresponding the different sets of ¢, j, k, f
have a different sign.

When a descend direction cannot be found with the conventional
gradient approaches (including the conjugate gradient), a random di-
rection can be used as a new search direction. A new direction is
drawn from the multivariate normal distribution or the uniform dis-
tribution on a complex hypersphere until a direction that decreases
the objective function is found (or the maximum allowed number
of function evaluations has been reached). Also, uphill climb may
initially be allowed with the randomized search directions.

In order to use the BFGS method, we use an alternative param-
etrization for the symbols so that the manifold constraints are con-
verted into a simpler linear constraints. We parametrize the symbols

as
(8)n = V(p)ne" ", @)

where j is the imaginary unit and p and ¢ are real-valued vectors.
With this parametrization, ||s;||> = 17C;p = 1 is a simple lin-
ear constraint. This constraint is easily satisfied by projecting the
search direction. Additionally, a constraint (p), > 0 Vn is required,
whereas ¢ is unconstrained. Therefore, the BFGS with bound con-
straints can be used. For constant-modulus codes, only the parameter
vector ¢ is required.

Next, we derive the gradients in the parametrization (21). This
time, the ordinary chain rule can be used to obtain

1.,
VPQi,j,k,f = §d1ag(Am~,k7fY + YHAiyjyk,f) (22)
Votijk s =)diag(XAi ik — AijrrX), (23)

where the elements of the matrices X and Y are defined as (X),; =

(s)i(s)7 and (Y); = ((37 , respectively. The function diag(-) is a
J
vector consisting of the diagonal elements of the matrix argument.

Using an auxiliary matrix
* H
Bijkf = Qi g Aiide,f + Qg Ai k£ 24
we finally obtain

Volti ks> =Re[Bijss) O] (25)
Volgijnrsl” =2Im[(Bijrrs) ©s], (26)

where @ denotes element-wise division and ® element-wise multi-
plication.

4. NUMERICAL EXAMPLES

Numerical examples of the proposed optimization approach are pro-
vided next. In order to compare the code design methods, we opti-
mized a waveform set consisting of three waveforms with 40 sym-
bols in each. Slow-time coding was assumed, so the normalized
Doppler frequency could take any values between —%and % The
objective was to obtain waveforms with lowest possible peak side-
lobe and peak cross-correlation levels. The proposed hybrid ap-
proach was used with the conjugate gradient (hCG) on the manifold
and the hybrid BFGS (hBFGS) using the alternative parametriza-
tion. These methods were compared with simulated annealing (SA)
as well as particle swarm optimization (PSO), which is a population-
based, stochastic algorithm for optimization of continuous nonlinear
functions [15].

The initial guess was chosen randomly, and the each method
iterated until 15000 function evaluations had been done. A typi-
cal outcome for the optimization can be seen in Fig.1 showing the
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Fig. 1. Achieved PSL and PCC as a function of used function evalu-
ations. SA and the hCG achieve similar PSL and PCC, but the hCG
requires only a fraction of the function evaluations.

achieved peak sidelobe level (PSL) and peak cross-corelation (PCC)
as a function of used function evaluations. The hybrid conjugate gra-
dient (hCG) and the simulated annealing achieve approximately the
same PSL and PCC levels. However, the hCG requires only a thou-
sand function evaluations, whereas the SA requires nearly 10000 for
the same result.

As the proposed method is partly stochastic, the outcome varies
with each run. This is demonstrated in Fig.2 showing the results for
different instance. This time, SA has provided lowest PSL and PCC
levels, and also PSO has achieved a better result than the proposed
methods.

In order to compare the performance more consistently, the mean
and variance of the achieved PSL and PCC were calculated over one
thousand runs. The results are shown in Fig.3 displaying the average
PSL and PCC. The averages are marked with the solid lines whereas
the dashed lines show one standard deviation. The proposed hCG
method performs consistently well with far fewer function evalua-
tions compared to the other methods. On the other hand, the decrease
of the PSL and PCC is much lower with the hBFGS and its variance
stays large. The PSO has a low initial variance as it has multiple
initial guesses, but it would seem to require much larger amount of
function evaluation to achieve good waveforms.

5. CONCLUSIONS

Cognitive and MIMO radars often need to optimize the transmitted
waveforms in real-time because of the rapidly varying state of the
radar spectrum and target parameters. In this paper, we proposed
a hybrid optimization approach that uses the conjugate gradient and
randomization for the search direction in the optimization of the peak
sidelobe and cross-correlation levels.

In the numerical examples, the proposed hCG method using con-
jugate gradient performed consistently well achieving similar results
to simulated annealing, but with only a fraction of the function eval-
uations required. Hence, it is more feasible for real-time waveform
optimization. The BFGS algorithm was also tested, but it did not
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Fig. 2. Alternative outcome of the compared methods. In this case,

simulated annealing has performed the best.

Waveform Optimization

rTTTTIT T T T TTTTT T T T TTTTTT T T T TTTTT T T T T
e —SA
I T |——heG
g \ v | ——hBFGS
=¥
< 0.20
=}
<
—
%]
Ay
3
=
o 0.15
£l
S
<
0.10 T\HH\ Lol Lol Lol Lol L

10! 102 10° 10*

Function Evaluations

10°

Fig. 3. Mean of the Max PSL and PCC for thousand runs. The
dashed lines show plus or minus one standard deviation from the

mean. The proposed CG method performs consistently well.
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perform as well. The conjugate gradient on the manifold using the
randomization was found out to be efficient for the given waveform
design problem.
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